Immune-Based Antitumor Effects of BRAF Inhibitors Rely on Signaling by CD40L and IFNγ
Ho PC, Meeth KM, Tsui YC, Srivastava B, Bosenberg MW, Kaech SM. Immune-Based Antitumor Effects of BRAF Inhibitors Rely on Signaling by CD40L and IFNγ. Cancer Research 2014, 74: 3205-3217. PMID: 24736544, PMCID: PMC4063281, DOI: 10.1158/0008-5472.can-13-3461.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntigen-Presenting CellsAntineoplastic AgentsCD40 LigandCD4-Positive T-LymphocytesDrug Screening Assays, AntitumorIndolesInterferon-gammaMacrophagesMelanoma, ExperimentalMiceMice, TransgenicMutation, MissenseProto-Oncogene Proteins B-rafSignal TransductionSkin NeoplasmsSulfonamidesTumor MicroenvironmentConceptsTumor-infiltrating lymphocytesIFNγ expressionMyeloid cellsImmune stimulatory microenvironmentTh1 effector functionRegulatory T cellsAgonistic CD40 antibodyImmune-related changesTumor-bearing miceSuppress tumor growthIFNγ blockadeImmunologic changesAntitumor immunityAntitumor responseCD40 antibodyTumor regressionT cellsBRAF inhibitorsMurine modelEffector functionsImmunosuppressive featuresAntitumor effectsHost immunityMelanoma growthTumor growth