2024
The cytidine deaminase APOBEC3A regulates nucleolar function to promote cell growth and ribosome biogenesis
McCool M, Bryant C, Abriola L, Surovtseva Y, Baserga S. The cytidine deaminase APOBEC3A regulates nucleolar function to promote cell growth and ribosome biogenesis. PLOS Biology 2024, 22: e3002718. PMID: 38976757, PMCID: PMC11257408, DOI: 10.1371/journal.pbio.3002718.Peer-Reviewed Original ResearchRibosome biogenesis factorsRibosome biogenesisBiogenesis factorsCell growthNucleolar functionRegulation of nucleolar functionHuman ribosome biogenesisProtein synthesisProduction of ribosomesFamily of proteinsSource of mutagenesisLevel of protein synthesisCytidine deaminase familyIncreased cell growthPromote cell growthPre-rRNAPotential direct rolePre-mRNATransient overexpressionRibosomeGenomic mutationsBiogenesisMCF10A cellsMaturation stepsAPOBEC3A
2023
Human nucleolar protein 7 (NOL7) is required for early pre-rRNA accumulation and pre-18S rRNA processing
McCool M, Bryant C, Huang H, Ogawa L, Farley-Barnes K, Sondalle S, Abriola L, Surovtseva Y, Baserga S. Human nucleolar protein 7 (NOL7) is required for early pre-rRNA accumulation and pre-18S rRNA processing. RNA Biology 2023, 20: 257-271. PMID: 37246770, PMCID: PMC10228412, DOI: 10.1080/15476286.2023.2217392.Peer-Reviewed Original ResearchConceptsPre-rRNA accumulationRibosome biogenesisNonessential roleEukaryotic ribosome biogenesisEssential cellular processesNucleolar stress responsePre-rRNA levelsRRNA processingLikely orthologCellular processesAssociated proteinsTumor suppressorStress responseHuman cellsProtein synthesisProtein 7Human counterpartBiogenesisYeastOrthologsHomologSubcomplexAccumulationRRNATranscription
2022
Human pre-60S assembly factors link rRNA transcription to pre-rRNA processing
McCool M, Buhagiar A, Bryant C, Ogawa L, Abriola L, Surovtseva Y, Baserga S. Human pre-60S assembly factors link rRNA transcription to pre-rRNA processing. RNA 2022, 29: rna.079149.122. PMID: 36323459, PMCID: PMC9808572, DOI: 10.1261/rna.079149.122.Peer-Reviewed Original ResearchRRNA transcriptionRRNA processingRibosomal subunit biogenesisRNA polymerase IRibosome biosynthesisSubunit biogenesisRibosome biogenesisRibosome assemblyAssembly factorsTranscription controlBiogenesis factorsRRNA productionSteady-state levelsRNA transcriptionPolymerase IComplex membersHuman cellsProtein synthesisP53 stabilizationTranscriptionEssential processBiogenesisCell proliferationDual roleRegulatory details
2020
Ribosome Biogenesis and its Role in Cell Growth and Proliferation in the Liver
Farley‐Barnes K, Baserga S. Ribosome Biogenesis and its Role in Cell Growth and Proliferation in the Liver. 2020, 174-182. DOI: 10.1002/9781119436812.ch15.ChaptersRibosome biogenesisBiogenesis of ribosomesProduction of ribosomesHuman ribosome biogenesisCell growthTumor suppressor p53Cellular cuesNumerous proteinsNucleolar stressRegulated processTranscription factorsBiogenesisNutrient availabilityKey regulatorMechanistic targetSuppressor p53Rapamycin (mTOR) pathwayRibosomesRegulationProliferationSuch diseasesMYCRegulatorCytoplasmProtein
2018
High throughput discovery of novel regulators of human ribosome biogenesis
Baserga S, Farley‐Barnes K, McCann K, Ogawa L, Merkel J, Surovtseva Y. High throughput discovery of novel regulators of human ribosome biogenesis. The FASEB Journal 2018, 32: 526.25-526.25. DOI: 10.1096/fasebj.2018.32.1_supplement.526.25.Peer-Reviewed Original ResearchRibosome biogenesisNucleolar functionNumber of nucleoliMammalian cellsGenome-wide siRNA screenRNA polymerase I transcriptionHuman ribosome biogenesisPre-ribosomal RNAPolymerase I transcriptionExperimental Biology 2018 MeetingHigh-throughput discoveryNucleolar proteinsRibosomal DNAProtein regulatorsI transcriptionNew regulatorNovel regulatorSiRNA screenBiogenesisHuman cellsProteinRegulatorNucleoliFASEB JournalThroughput discovery
2016
Nop9 is a PUF-like protein that prevents premature cleavage to correctly process pre-18S rRNA
Zhang J, McCann KL, Qiu C, Gonzalez LE, Baserga SJ, Hall TM. Nop9 is a PUF-like protein that prevents premature cleavage to correctly process pre-18S rRNA. Nature Communications 2016, 7: 13085. PMID: 27725644, PMCID: PMC5062617, DOI: 10.1038/ncomms13085.Peer-Reviewed Original ResearchConceptsEukaryotic ribosome biogenesisCorrect subcellular locationRibosome assembly factorsPre-ribosomal RNAPumilio repeatsRibosome biogenesisHuman ribosomopathiesAssembly factorsBiogenesis factorsRepeat proteinsMature rRNASubcellular locationNop9RNA complexCleavage siteRRNATimely cleavageProteinStructural featuresFinal processing stepRibosomopathiesBiogenesisCleavageYeastNucleaseProbing the mechanisms underlying human diseases in making ribosomes.
Farley KI, Baserga SJ. Probing the mechanisms underlying human diseases in making ribosomes. Biochemical Society Transactions 2016, 44: 1035-44. PMID: 27528749, PMCID: PMC5360156, DOI: 10.1042/bst20160064.Peer-Reviewed Original ResearchDiscovery of mammalian regulators of ribosome biogenesis
Farley K, McCann K, Merkel J, Surovtseva Y, Baserga S. Discovery of mammalian regulators of ribosome biogenesis. The FASEB Journal 2016, 30 DOI: 10.1096/fasebj.30.1_supplement.594.1.Peer-Reviewed Original ResearchRibosome biogenesisNucleolar functionNumber of nucleoliGenome-wide siRNA screenRNA polymerase I transcriptionPre-ribosomal RNAPolymerase I transcriptionMammalian regulatorsChromatin stateNucleolar proteinsRibosomal DNAMammalian cellsProtein regulatorsI transcriptionNew regulatorSiRNA screenBiogenesisNucleolar numberHuman cellsProteinRegulatorNucleoliNew roleCellsNew pathwayWhen Good Ribosomes Go Bad
Baserga S, McCann K, Teramoto T, Zhang J, Tanaka Hall T. When Good Ribosomes Go Bad. The FASEB Journal 2016, 30 DOI: 10.1096/fasebj.30.1_supplement.387.1.Peer-Reviewed Original ResearchProtein-protein interactionsRNA recognition motifANE syndromeRibosome biogenesisRRNA processingProtein functionMolecular basisPre-rRNA processing defectThird RNA recognition motifDefective protein foldingHuman genetic diseasesFull-length proteinSingle amino acid substitutionNumerous human disordersAmino acid substitutionsYeast orthologMature ribosomesEukaryotic cellsGood ribosomeRibosome synthesisHub proteinsNucleolar proteinsNucleolar functionDomain foldingNucleolar dysfunction
2015
Determinants of mammalian nucleolar architecture
Farley KI, Surovtseva Y, Merkel J, Baserga SJ. Determinants of mammalian nucleolar architecture. Chromosoma 2015, 124: 323-331. PMID: 25670395, PMCID: PMC4534358, DOI: 10.1007/s00412-015-0507-z.Peer-Reviewed Original ResearchConceptsNucleolar formationNucleolar architectureNucleolar structureNucleolar organizer regionsProduction of ribosomesRibosome biogenesisFunctional nucleoliHuman nucleoliCell divisionOrganizer regionsNucleoliEssential machineFunction manifestBiogenesisIntricate relationshipMinimal requirementsCellsRibosomesOrganellesProteinFunctionFormationDivisionDeterminants
2013
NOL11, implicated in the pathogenesis of North American Indian Childhood Cirrhosis, is required for pre‐rRNA transcription and processing
Baserga S, Freed E, Prieto J, McCann K, McStay B. NOL11, implicated in the pathogenesis of North American Indian Childhood Cirrhosis, is required for pre‐rRNA transcription and processing. The FASEB Journal 2013, 27: 552.1-552.1. DOI: 10.1096/fasebj.27.1_supplement.552.1.Peer-Reviewed Original ResearchNorth American Indian childhood cirrhosisRibosome biogenesisSmall subunitC-terminusInteraction partnersDefective protein-protein interactionsTwo-hybrid cDNA libraryUncharacterized nucleolar proteinRibosome biogenesis factorsRibosome biogenesis defectsTwo-hybrid analysisPre-rRNA transcriptionRibosomal small subunitProtein-protein interactionsCo-immunoprecipitation experimentsRDNA transcriptionBiogenesis defectsBiogenesis factorsNucleolar proteinsNovel proteinCDNA libraryCirhinAffinity purificationDisease mutationsSiRNA knockdown
2011
Small Ribonucleoproteins in Ribosome Biogenesis
Bleichert F, Baserga S. Small Ribonucleoproteins in Ribosome Biogenesis. Protein Reviews 2011, 135-156. DOI: 10.1007/978-1-4614-0514-6_7.ChaptersSmall nucleolar RNPsSite of functionNon-enzymatic functionsRibosome biogenesisFunctional ribosomesEukaryotic cellsSmall ribonucleoproteinSmall RNPsGuide RNANucleotide modificationsRNA componentRNA substratesSubstrate RNAEndonucleolytic cleavageMacromolecular assembliesRNA foldingCurrent understandingRNARNPNucleoliEnzymeLarge macromoleculesAssemblyChaperonesBiogenesis
1997
Mpp10p, a U3 Small Nucleolar Ribonucleoprotein Component Required for Pre-18S rRNA Processing in Yeast
Dunbar D, Wormsley S, Agentis T, Baserga S. Mpp10p, a U3 Small Nucleolar Ribonucleoprotein Component Required for Pre-18S rRNA Processing in Yeast. Molecular And Cellular Biology 1997, 17: 5803-5812. PMID: 9315638, PMCID: PMC232428, DOI: 10.1128/mcb.17.10.5803.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsAntibodiesCloning, MolecularEscherichia coliGenes, FungalHumansMiceMolecular Sequence DataMolecular WeightPhosphoproteinsRecombinant Fusion ProteinsRibonucleoproteinsRibonucleoproteins, Small NuclearRNA PrecursorsRNA Processing, Post-TranscriptionalRNA, RibosomalRNA, Ribosomal, 18SSaccharomyces cerevisiaeSaccharomyces cerevisiae ProteinsSequence Homology, Amino AcidSpores, FungalConceptsYeast proteinsU3 snoRNPProtein componentsU3 small nucleolar ribonucleoproteinNovel protein componentsPre-rRNA processingSmall nucleolar ribonucleoproteinS. cerevisiae cellsSpecific protein componentsPulse-chase analysisMitotic phosphorylationRibosome biogenesisEssential genesMpp10pYeast SaccharomycesNovel proteinU3 snoRNARRNA precursorNucleolar ribonucleoproteinSites A0Tetrad analysisHuman proteinsNull allelesCerevisiae cellsGenBank search
1996
The U18 snRNA is not essential for pre-rRNA processing in Xenopus laevis.
Dunbar D, Ware V, Baserga S. The U18 snRNA is not essential for pre-rRNA processing in Xenopus laevis. RNA 1996, 2: 324-33. PMID: 8634913, PMCID: PMC1369375.Peer-Reviewed Original Research