2020
Ribosome Biogenesis and its Role in Cell Growth and Proliferation in the Liver
Farley‐Barnes K, Baserga S. Ribosome Biogenesis and its Role in Cell Growth and Proliferation in the Liver. 2020, 174-182. DOI: 10.1002/9781119436812.ch15.ChaptersRibosome biogenesisBiogenesis of ribosomesProduction of ribosomesHuman ribosome biogenesisCell growthTumor suppressor p53Cellular cuesNumerous proteinsNucleolar stressRegulated processTranscription factorsBiogenesisNutrient availabilityKey regulatorMechanistic targetSuppressor p53Rapamycin (mTOR) pathwayRibosomesRegulationProliferationSuch diseasesMYCRegulatorCytoplasmProtein
2018
High throughput discovery of novel regulators of human ribosome biogenesis
Baserga S, Farley‐Barnes K, McCann K, Ogawa L, Merkel J, Surovtseva Y. High throughput discovery of novel regulators of human ribosome biogenesis. The FASEB Journal 2018, 32: 526.25-526.25. DOI: 10.1096/fasebj.2018.32.1_supplement.526.25.Peer-Reviewed Original ResearchRibosome biogenesisNucleolar functionNumber of nucleoliMammalian cellsGenome-wide siRNA screenRNA polymerase I transcriptionHuman ribosome biogenesisPre-ribosomal RNAPolymerase I transcriptionExperimental Biology 2018 MeetingHigh-throughput discoveryNucleolar proteinsRibosomal DNAProtein regulatorsI transcriptionNew regulatorNovel regulatorSiRNA screenBiogenesisHuman cellsProteinRegulatorNucleoliFASEB JournalThroughput discovery
2016
Nop9 is a PUF-like protein that prevents premature cleavage to correctly process pre-18S rRNA
Zhang J, McCann KL, Qiu C, Gonzalez LE, Baserga SJ, Hall TM. Nop9 is a PUF-like protein that prevents premature cleavage to correctly process pre-18S rRNA. Nature Communications 2016, 7: 13085. PMID: 27725644, PMCID: PMC5062617, DOI: 10.1038/ncomms13085.Peer-Reviewed Original ResearchConceptsEukaryotic ribosome biogenesisCorrect subcellular locationRibosome assembly factorsPre-ribosomal RNAPumilio repeatsRibosome biogenesisHuman ribosomopathiesAssembly factorsBiogenesis factorsRepeat proteinsMature rRNASubcellular locationNop9RNA complexCleavage siteRRNATimely cleavageProteinStructural featuresFinal processing stepRibosomopathiesBiogenesisCleavageYeastNucleaseProbing the mechanisms underlying human diseases in making ribosomes.
Farley KI, Baserga SJ. Probing the mechanisms underlying human diseases in making ribosomes. Biochemical Society Transactions 2016, 44: 1035-44. PMID: 27528749, PMCID: PMC5360156, DOI: 10.1042/bst20160064.Peer-Reviewed Original ResearchThe Contributions of the Ribosome Biogenesis Protein Utp5/WDR43 to Craniofacial Development
Sondalle SB, Baserga SJ, Yelick PC. The Contributions of the Ribosome Biogenesis Protein Utp5/WDR43 to Craniofacial Development. Journal Of Dental Research 2016, 95: 1214-1220. PMID: 27221611, PMCID: PMC5076753, DOI: 10.1177/0022034516651077.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsRibosomal proteinsCraniofacial developmentRibosome biogenesis proteinsRibosomal protein functionHuman craniofacial developmentTissue-specific defectsDiverse cell typesHuman ribosomopathiesBiogenesis proteinsTranslational machineryProtein functionDistinct functionsTranslational mechanismsTissue differentiationCell typesWDR43Global defectsProteinExciting researchSurprising similaritiesUnderstanding of rolesRibosomopathiesBiogenesisMachineryMutationsThe molecular basis for ANE syndrome revealed by the large ribosomal subunit processome interactome
McCann KL, Teramoto T, Zhang J, Hall T, Baserga SJ. The molecular basis for ANE syndrome revealed by the large ribosomal subunit processome interactome. ELife 2016, 5: e16381. PMID: 27077951, PMCID: PMC4859800, DOI: 10.7554/elife.16381.Peer-Reviewed Original ResearchMeSH KeywordsAlopeciaCircular DichroismEndocrine System DiseasesHumansIntellectual DisabilityMagnetic Resonance SpectroscopyModels, BiologicalMutant ProteinsProtein BindingProtein FoldingProtein Interaction MapsRibonucleoproteins, Small NucleolarRibosome Subunits, LargeRNA PrecursorsRNA Processing, Post-TranscriptionalRNA-Binding ProteinsSaccharomyces cerevisiaeSaccharomyces cerevisiae ProteinsConceptsProtein-protein interactionsANE syndromeMolecular basisDefective protein foldingRRNA processing defectsRNA recognition motifMature ribosomesRibosome assemblyHub proteinsRRNA processingNucleolar proteinsDomain foldingProtein foldingRecognition motifHuman diseasesProcessing defectsInteractomeMutationsCircular dichroismHub functionModel systemYeastFoldingProteinNOP4Discovery of mammalian regulators of ribosome biogenesis
Farley K, McCann K, Merkel J, Surovtseva Y, Baserga S. Discovery of mammalian regulators of ribosome biogenesis. The FASEB Journal 2016, 30 DOI: 10.1096/fasebj.30.1_supplement.594.1.Peer-Reviewed Original ResearchRibosome biogenesisNucleolar functionNumber of nucleoliGenome-wide siRNA screenRNA polymerase I transcriptionPre-ribosomal RNAPolymerase I transcriptionMammalian regulatorsChromatin stateNucleolar proteinsRibosomal DNAMammalian cellsProtein regulatorsI transcriptionNew regulatorSiRNA screenBiogenesisNucleolar numberHuman cellsProteinRegulatorNucleoliNew roleCellsNew pathway
2015
A protein interaction map of the LSU processome
McCann KL, Charette JM, Vincent NG, Baserga SJ. A protein interaction map of the LSU processome. Genes & Development 2015, 29: 862-875. PMID: 25877921, PMCID: PMC4403261, DOI: 10.1101/gad.256370.114.Peer-Reviewed Original ResearchConceptsLarge ribosomal subunitBiogenesis factorsRibosome biogenesis factorsTwo-hybrid assayProtein interaction mapsProtein-protein interactionsSystems biology approachInteractome mapHub proteinsBiology approachProcessomeProtein pairsRibosomal subunitInteraction mapCoordinated processConcerted actionCurrent knowledgeEukaryotesNOP4SubcomplexSubunitsProteinFourfold increaseMaturationAssemblyDeterminants of mammalian nucleolar architecture
Farley KI, Surovtseva Y, Merkel J, Baserga SJ. Determinants of mammalian nucleolar architecture. Chromosoma 2015, 124: 323-331. PMID: 25670395, PMCID: PMC4534358, DOI: 10.1007/s00412-015-0507-z.Peer-Reviewed Original ResearchConceptsNucleolar formationNucleolar architectureNucleolar structureNucleolar organizer regionsProduction of ribosomesRibosome biogenesisFunctional nucleoliHuman nucleoliCell divisionOrganizer regionsNucleoliEssential machineFunction manifestBiogenesisIntricate relationshipMinimal requirementsCellsRibosomesOrganellesProteinFunctionFormationDivisionDeterminants
2014
Making Ribosomes: Pre-rRNA Transcription and Processing
McCann K, Baserga S. Making Ribosomes: Pre-rRNA Transcription and Processing. 2014, 217-232. DOI: 10.1007/978-3-319-05687-6_9.Peer-Reviewed Original ResearchDiscovering the pre‐60S ribosome biogenesis factor interactome (560.7)
McCann K, Charette J, Vincent N, Baserga S. Discovering the pre‐60S ribosome biogenesis factor interactome (560.7). The FASEB Journal 2014, 28 DOI: 10.1096/fasebj.28.1_supplement.560.7.Peer-Reviewed Original ResearchRibosome assemblyGlycerol gradient sedimentation analysisTwo-hybrid analysisHigh-throughput yeastHigh-confidence interactionsPotential regulatory mechanismsGradient sedimentation analysisRNA helicasesBiogenesis factorsSmaller subcomplexesMDa complexNucleolar proteinsRibosomal subunitRegulatory mechanismsDifferent proteinsSubcomplexHelicasesGlycerol gradientsIndependent validation experimentsInteractomeSedimentation analysisYeastCurrent knowledgeProteinAssembly
2001
Fibrillarin and Other snoRNP Proteins Are Targets of Autoantibodies in Xenobiotic-Induced Autoimmunity
Yang J, Baserga S, Turley S, Pollard K. Fibrillarin and Other snoRNP Proteins Are Targets of Autoantibodies in Xenobiotic-Induced Autoimmunity. Clinical Immunology 2001, 101: 38-50. PMID: 11580225, DOI: 10.1006/clim.2001.5099.Peer-Reviewed Original ResearchConceptsSJL/J miceSmall nucleolar ribonucleoproteinSnoRNP proteinsCajal bodiesNucleolar ribonucleoproteinMetaphase chromosomesAmphibian cellsJ miceFibrillarinInterphase cellsProtein componentsNucleolar immunofluorescence patternProteinAnti-nucleolar antibodiesCell linesTarget of autoantibodiesAutoantibody responseAntibody responsePredominant targetImmunofluorescence patternMurineCellsRibonucleoproteinChromosomesMiceAn unexpected, conserved element of the U3 snoRNA is required for Mpp10p association.
Wormsley S, Samarsky D, Fournier M, Baserga S. An unexpected, conserved element of the U3 snoRNA is required for Mpp10p association. RNA 2001, 7: 904-19. PMID: 11421365, PMCID: PMC1370138, DOI: 10.1017/s1355838201010238.Peer-Reviewed Original ResearchConceptsU3 snoRNAU3 snoRNPYeast U3 snoRNAU3 small nucleolar ribonucleoproteinSmall nucleolar ribonucleoproteinSmall nucleolar RNAsStretch of nucleotidesHinge regionBase-pairing interactionsRRNA transcriptsNucleolar RNAsNucleolar ribonucleoproteinConserved elementSequence elementsProtein componentsSnoRNAsProcessing reactionsBase pairsMpp10pBase pairingSnoRNPsFunctional centersRRNACritical roleProtein
1999
Imp3p and Imp4p, Two Specific Components of the U3 Small Nucleolar Ribonucleoprotein That Are Essential for Pre-18S rRNA Processing
Lee S, Baserga S. Imp3p and Imp4p, Two Specific Components of the U3 Small Nucleolar Ribonucleoprotein That Are Essential for Pre-18S rRNA Processing. Molecular And Cellular Biology 1999, 19: 5441-5452. PMID: 10409734, PMCID: PMC84386, DOI: 10.1128/mcb.19.8.5441.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceGenes, ReporterGenetic TechniquesGenetic VectorsMacromolecular SubstancesMolecular Sequence DataPhosphoproteinsRecombinant Fusion ProteinsRibonucleoproteinsRibonucleoproteins, Small NuclearRibosomal ProteinsRNA PrecursorsRNA, FungalRNA, Ribosomal, 18SSaccharomyces cerevisiaeSaccharomyces cerevisiae ProteinsSequence AlignmentSequence Homology, Amino AcidConceptsU3 small nucleolar ribonucleoproteinSmall nucleolar ribonucleoproteinProtein componentsU3 snoRNPNucleolar ribonucleoproteinGenetic depletionTwo-hybrid methodologyNovel protein componentsPre-rRNA processingUnique protein componentRibosomal proteinsSnoRNA levelsRRNA processingU3 snoRNARRNA precursorIMP proteinU3 RNAS4 familiesPrecise functionSevere defectsCleavage eventsMpp10pProteinSnoRNPsRNA
1998
M Phase Phosphoprotein 10 Is a Human U3 Small Nucleolar Ribonucleoprotein Component
Westendorf J, Konstantinov K, Wormsley S, Shu M, Matsumoto-Taniura N, Pirollet F, Klier F, Gerace L, Baserga S. M Phase Phosphoprotein 10 Is a Human U3 Small Nucleolar Ribonucleoprotein Component. Molecular Biology Of The Cell 1998, 9: 437-449. PMID: 9450966, PMCID: PMC25272, DOI: 10.1091/mbc.9.2.437.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceBase SequenceCell FractionationCell NucleolusChromosomal Proteins, Non-HistoneCloning, MolecularDactinomycinDNA, ComplementaryHeLa CellsHumansIsoelectric PointMitosisMolecular Sequence DataMolecular WeightNuclear ProteinsPhosphoproteinsRibonucleoproteinsRibonucleoproteins, Small NuclearRNA, Small NuclearSequence Analysis, DNASpecies SpecificityConceptsM-phase phosphoproteinsPrenucleolar bodiesBox C/D snoRNAsU3 small nucleolar RNASmall nucleolar RNAsIsolation of cDNAsHuman U3D snoRNAsRRNA processingNucleolar proteinsP80-coilinNovel proteinNucleolar functionU3 snoRNAChromosome surfaceNucleolar RNAsCell fractionationMpp10FibrillarinInterphase cellsCell cycleRibonucleoprotein componentsM phaseProteinSnoRNAs
1997
Mpp10p, a new protein component of the U3 snoRNP required for processing of 18S rRNA precursors.
Baserga S, Agentis T, Wormsley S, Dunbar D, Lee S. Mpp10p, a new protein component of the U3 snoRNP required for processing of 18S rRNA precursors. Nucleic Acids Symposium Series 1997, 64-7. PMID: 9478208.Peer-Reviewed Original ResearchConceptsPre-rRNA processingNew protein componentsU3 snoRNPProtein componentsU3 small nucleolar ribonucleoproteinSmall nucleolar ribonucleoproteinEssential genesSlow growthConditional promoterU3 snoRNAMpp10pNucleolar ribonucleoproteinRRNA precursorProcessing eventsYeastSnoRNPsMpp10ProteinModel systemDegrees C. AnalysisC. AnalysisSnoRNAsMutantsRibonucleoproteinSaccharomyces