2023
Amino-terminal proteolytic fragment of the axon growth inhibitor Nogo-A (Rtn4A) is upregulated by injury and promotes axon regeneration
Sekine Y, Wang X, Kikkawa K, Honda S, Strittmatter S. Amino-terminal proteolytic fragment of the axon growth inhibitor Nogo-A (Rtn4A) is upregulated by injury and promotes axon regeneration. Journal Of Biological Chemistry 2023, 299: 105232. PMID: 37690690, PMCID: PMC10622843, DOI: 10.1016/j.jbc.2023.105232.Peer-Reviewed Original ResearchConceptsAxon regenerationCentral nervous system injuryPersistent neurological deficitsCerebral cortical neuronsNervous system injuryNeurological deficitsSystem injuryCNS injuryCortical neuronsAmino-terminal fragmentInjuryExtracellular actionPhysiological productionNogoInhibitory proteinMiceNeuronsInhibitory domainOverexpression increasesVaried resultsProteolytic fragmentsAxotomyExpressionNogoAGene targetingConcerted roles of LRRTM1 and SynCAM 1 in organizing prefrontal cortex synapses and cognitive functions
de Arce K, Ribic A, Chowdhury D, Watters K, Thompson G, Sanganahalli B, Lippard E, Rohlmann A, Strittmatter S, Missler M, Hyder F, Biederer T. Concerted roles of LRRTM1 and SynCAM 1 in organizing prefrontal cortex synapses and cognitive functions. Nature Communications 2023, 14: 459. PMID: 36709330, PMCID: PMC9884278, DOI: 10.1038/s41467-023-36042-w.Peer-Reviewed Original ResearchConceptsPrefrontal cortexDKO miceSynCAM 1Aberrant neuronal activityDendritic spine numberPrefrontal cortex synapsesSynapse organizersSynapse numberMature brainNeuronal activityKnockout miceSpine numberSynapse developmentCognitive functionTrans-synaptic complexesImmunoglobulin family membersMiceFamily membersSynapsesLRRTM1Behavioral domainsHippocampusCognitive tasksConcerted roleCortex
2022
Targeting RTN4/NoGo-Receptor reduces levels of ALS protein ataxin-2
Rodriguez CM, Bechek SC, Jones GL, Nakayama L, Akiyama T, Kim G, Solow-Cordero DE, Strittmatter SM, Gitler AD. Targeting RTN4/NoGo-Receptor reduces levels of ALS protein ataxin-2. Cell Reports 2022, 41: 111505. PMID: 36288715, PMCID: PMC9664481, DOI: 10.1016/j.celrep.2022.111505.Peer-Reviewed Original ResearchConceptsAmyotrophic lateral sclerosisSpinocerebellar ataxia type 2Nogo receptorAtaxin-2 levelsNovel therapeutic targetNeurodegenerative disease amyotrophic lateral sclerosisGene-based therapeutic strategiesDisease amyotrophic lateral sclerosisNerve injuryAtaxin-2Axonal regenerationAxonal regrowthLateral sclerosisTherapeutic strategiesHuman neuronsKnockout miceTherapeutic targetPotential treatmentType 2Protein levelsPotent modifierProtein ataxin-2Additional strategiesMiceRNA screen
2021
Spreading of Alzheimer tau seeds is enhanced by aging and template matching with limited impact of amyloid-β
Nies SH, Takahashi H, Herber CS, Huttner A, Chase A, Strittmatter SM. Spreading of Alzheimer tau seeds is enhanced by aging and template matching with limited impact of amyloid-β. Journal Of Biological Chemistry 2021, 297: 101159. PMID: 34480901, PMCID: PMC8477193, DOI: 10.1016/j.jbc.2021.101159.Peer-Reviewed Original ResearchConceptsTau seedsAlzheimer's diseaseAD model miceWT mouse brainPathological tauSynaptic lossTau accumulationWT miceMouse tauTau pathologyTau burdenModel miceTau inclusionsPharmacological interventionsAD riskCognitive declineMouse brainTau aggregatesPyk2 kinaseKnowledge of factorsKinase inhibitorsMiceFyn kinase inhibitorAβMouse aging
2020
Elucidating the role of the AD risk factor Pyk2 in tau‐induced neuronal dysfunction
Brody A, Strittmatter S. Elucidating the role of the AD risk factor Pyk2 in tau‐induced neuronal dysfunction. Alzheimer's & Dementia 2020, 16 DOI: 10.1002/alz.036625.Peer-Reviewed Original ResearchSpatial memory impairmentCell layer thicknessGenetic deletionTau pathologyTau phosphorylationMemory impairmentPharmacological inhibitionAcute hippocampal slice preparationsTau-induced neuronal dysfunctionHippocampal slice preparationPS19 miceNeuronal dysfunctionSlice preparationHistological assessmentMouse modelKnockout micePyk2 activityExacerbationMicePyk2PathologyImpairmentAnimalsTauPhenotype
2017
Disease-modifying benefit of Fyn blockade persists after washout in mouse Alzheimer's model
Smith LM, Zhu R, Strittmatter SM. Disease-modifying benefit of Fyn blockade persists after washout in mouse Alzheimer's model. Neuropharmacology 2017, 130: 54-61. PMID: 29191754, PMCID: PMC5743608, DOI: 10.1016/j.neuropharm.2017.11.042.Peer-Reviewed Original ResearchConceptsAlzheimer's modelDisease-modifying effectsDisease-modifying therapiesMouse Alzheimer’s modelsTherapy withdrawalAPPswe/Investigational agentsSynapse densityDrug washoutTransgenic modelAlzheimer's diseasePersistent benefitsPersistent improvementSaracatinibFyn inhibitorMemantineLoss of benefitDiseaseSpatial memoryMemory functionWashoutTherapySymptomsMiceWeeks
2016
Axonal branching in lateral olfactory tract is promoted by Nogo signaling
Iketani M, Yokoyama T, Kurihara Y, Strittmatter SM, Goshima Y, Kawahara N, Takei K. Axonal branching in lateral olfactory tract is promoted by Nogo signaling. Scientific Reports 2016, 6: 39586. PMID: 28000762, PMCID: PMC5175167, DOI: 10.1038/srep39586.Peer-Reviewed Original ResearchConceptsLateral olfactory tractCultured OB neuronsOB neuronsCollateral branchesAxonal branchingOlfactory bulbOlfactory tractAxonal bundlesMajor projection neuronsReceptor 1 antagonistKnockdown of NogoCollateral formationProjection neuronsPrimary axonsNogo signalingMitral cellsMiceNeuronsExpression levelsAbnormal increaseTractNogoAntagonistAxons
2014
Progressive retinal degeneration and accumulation of autofluorescent lipopigments in Progranulin deficient mice
Hafler BP, Klein ZA, Zhou Z, Strittmatter SM. Progressive retinal degeneration and accumulation of autofluorescent lipopigments in Progranulin deficient mice. Brain Research 2014, 1588: 168-174. PMID: 25234724, PMCID: PMC4254024, DOI: 10.1016/j.brainres.2014.09.023.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCells, CulturedElectroretinographyGranulinsImmunohistochemistryIntercellular Signaling Peptides and ProteinsMice, Inbred C57BLMice, KnockoutMicroscopy, ConfocalNeuronal Ceroid-LipofuscinosesOptical ImagingPhotoreceptor Cells, VertebrateProgranulinsRetinal DegenerationRetinal Ganglion CellsConceptsProgranulin-deficient miceNeuronal ceroid lipofuscinosisAdult-onset neuronal ceroid lipofuscinosisDeficient miceRetinal degenerationCeroid lipofuscinosisRetinal ganglion cellsCentral nervous systemAutofluorescent storage materialMotor dysfunctionNeuropathological analysisGanglion cellsVision lossOptic atrophyEarly deathAutofluorescent lipopigmentsClinical observationsNervous systemDegenerative pathologyMiceDegenerationHomozygous mutationAutofluorescent materialPatientsNeurons
2013
Multimodal exercises simultaneously stimulating cortical and brainstem pathways after unilateral corticospinal lesion
Harel NY, Yigitkanli K, Fu Y, Cafferty WB, Strittmatter SM. Multimodal exercises simultaneously stimulating cortical and brainstem pathways after unilateral corticospinal lesion. Brain Research 2013, 1538: 17-25. PMID: 24055330, PMCID: PMC3873870, DOI: 10.1016/j.brainres.2013.07.012.Peer-Reviewed Original ResearchConceptsBrainstem pathwaysMultimodal exerciseCorticospinal tractTraining groupContext of injuryCST pathwayAnatomical outcomesCST injuryPostural exercisesCorticospinal lesionsCollateral sproutingCST lesionElectrophysiological assessmentSpinal cordPhysical exerciseGait kinematicsLimb performanceSynaptic strengthLesionsSubcortical circuitsFiber densityMiceInjuryFurther studiesExerciseAnatomical Plasticity of Adult Brain Is Titrated by Nogo Receptor 1
Akbik FV, Bhagat SM, Patel PR, Cafferty WB, Strittmatter SM. Anatomical Plasticity of Adult Brain Is Titrated by Nogo Receptor 1. Neuron 2013, 77: 859-866. PMID: 23473316, PMCID: PMC3594793, DOI: 10.1016/j.neuron.2012.12.027.Peer-Reviewed Original ResearchConceptsNgr1-/- miceNogo receptor 1Somatosensory cortexReceptor 1Adult cerebral cortexDendritic spine turnoverDendritic spine dynamicsAnatomical plasticityCerebral cortexControl miceSpine turnoverAxonal varicositiesWhisker removalAdult brainDendritic spinesSpine dynamicsNull miceAge 26Synaptic turnoverAnatomical connectivityConditional deletionMiceLower set pointNgR1Cortex
2011
Cartilage Acidic Protein–1B (LOTUS), an Endogenous Nogo Receptor Antagonist for Axon Tract Formation
Sato Y, Iketani M, Kurihara Y, Yamaguchi M, Yamashita N, Nakamura F, Arie Y, Kawasaki T, Hirata T, Abe T, Kiyonari H, Strittmatter SM, Goshima Y, Takei K. Cartilage Acidic Protein–1B (LOTUS), an Endogenous Nogo Receptor Antagonist for Axon Tract Formation. Science 2011, 333: 769-773. PMID: 21817055, PMCID: PMC3244695, DOI: 10.1126/science.1204144.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAxonsBinding SitesCalcium-Binding ProteinsCell LineCells, CulturedGPI-Linked ProteinsGrowth ConesHumansImmunohistochemistryLigandsMiceMice, Inbred ICRMyelin ProteinsNogo ProteinsNogo Receptor 1Olfactory PathwaysProsencephalonProtein BindingReceptors, Cell SurfaceSignal TransductionConceptsTract formationNogo receptor 1Axon growth inhibitorsProtein 1BEndogenous antagonismAxon tract formationReceptor antagonistGrowth cone collapseAxonal projectionsCircuitry formationNeural circuitry formationMouse brainReceptor 1LOT formationNeural regenerationNgR1Key moleculesCone collapseMiceFluorophore-assisted light inactivationGrowth inhibitorAntagonistBrainMyelinNogo
2010
Lynx for Braking Plasticity
Higley MJ, Strittmatter SM. Lynx for Braking Plasticity. Science 2010, 330: 1189-1190. PMID: 21109660, PMCID: PMC3244692, DOI: 10.1126/science.1198983.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Signal TransducingAgingAmblyopiaAnimalsChondroitin Sulfate ProteoglycansDominance, OcularMembrane GlycoproteinsMiceMice, KnockoutNeuronal PlasticityNeuropeptidesNicotinic AntagonistsReceptors, ImmunologicReceptors, NicotinicSensory DeprivationSignal TransductionVision, OcularVisual CortexVisual PathwaysConceptsVisual cortex plasticityVisual cortex neuronsNicotinic acetylcholine receptorsJuvenile plasticityNeurological performanceCortex neuronsJuvenile brainOcular dominanceAdult miceAcetylcholine receptorsVisual cortexAdult animalsSensory inputAdultsYoung mammalsMiceMedical implicationsEyesSuch plasticityPlasticityCortexNeuronsBrainReceptorsSortilin-Mediated Endocytosis Determines Levels of the Frontotemporal Dementia Protein, Progranulin
Hu F, Padukkavidana T, Vægter CB, Brady OA, Zheng Y, Mackenzie IR, Feldman HH, Nykjaer A, Strittmatter SM. Sortilin-Mediated Endocytosis Determines Levels of the Frontotemporal Dementia Protein, Progranulin. Neuron 2010, 68: 654-667. PMID: 21092856, PMCID: PMC2990962, DOI: 10.1016/j.neuron.2010.09.034.Peer-Reviewed Original ResearchConceptsFrontotemporal lobar degenerationSerum PGRN levelsFTLD-TDP casesFTLD-TDPMicroglial cellsPGRN levelsCortical neuronsGRN haploinsufficiencyProgranulin mutationsTDP-43Causative rolePGRNUbiquitin aggregatesNeuronsSortilinMiceCell surfaceDetermine levelsPathophysiologyInjuryProgranulinCNSCentral roleDegenerationBrainNogo Receptor Deletion and Multimodal Exercise Improve Distinct Aspects of Recovery in Cervical Spinal Cord Injury
Harel NY, Song KH, Tang X, Strittmatter SM. Nogo Receptor Deletion and Multimodal Exercise Improve Distinct Aspects of Recovery in Cervical Spinal Cord Injury. Journal Of Neurotrauma 2010, 27: 2055-2066. PMID: 20809785, PMCID: PMC2978056, DOI: 10.1089/neu.2010.1491.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBehavior, AnimalExercise TherapyFemaleGene DeletionGenotypeGPI-Linked ProteinsHand StrengthImmunohistochemistryMaleMiceMice, Inbred C57BLMyelin ProteinsNeuronal PlasticityNogo Receptor 1Physical Conditioning, AnimalPostural BalanceReceptors, Cell SurfaceReproducibility of ResultsSerotoninSpinal CordSpinal Cord InjuriesWalkingConceptsSpinal cord injuryCord injuryCervical spinal cord injuryIncomplete spinal cord injuryCervical spinal injurySignificant histological differencesMultimodal exerciseExercise trainingLateral hemisectionReceptor deletionSpinal injuryLesion modelMouse modelAdult miceLesion sizeGene deletionHistological differencesNeural plasticityMild deficitsHistological analysisTraining regimenInjuryPhysical interventionsC3-C4MiceLaurén et al. reply
Laurén J, Gimbel D, Nygaard H, Gilbert J, Strittmatter S. Laurén et al. reply. Nature 2010, 466: e4-e5. DOI: 10.1038/nature09218.Peer-Reviewed Original ResearchDisease model miceTransgenic Alzheimer's disease model miceAlzheimer's disease model miceDisease miceModel miceDisease progressionTransgenic Alzheimer's disease miceSpatial learningAlzheimer's disease miceAlzheimer's disease progressionSynapse lossAxonal degenerationEarly deathTransgenic miceCellular prion proteinMicePrion proteinPrPCDeficitsExpression cloningDirect assessmentDegenerationMAG and OMgp Synergize with Nogo-A to Restrict Axonal Growth and Neurological Recovery after Spinal Cord Trauma
Cafferty WB, Duffy P, Huebner E, Strittmatter SM. MAG and OMgp Synergize with Nogo-A to Restrict Axonal Growth and Neurological Recovery after Spinal Cord Trauma. Journal Of Neuroscience 2010, 30: 6825-6837. PMID: 20484625, PMCID: PMC2883258, DOI: 10.1523/jneurosci.6239-09.2010.Peer-Reviewed Original ResearchMeSH KeywordsAnalysis of VarianceAnimalsBiotinCells, CulturedDextransDisease Models, AnimalFemaleFunctional LateralityGanglia, SpinalGPI-Linked ProteinsMaleMiceMice, Inbred C57BLMice, KnockoutMutationMyelin ProteinsMyelin-Associated GlycoproteinMyelin-Oligodendrocyte GlycoproteinNerve Tissue ProteinsNeuronsNogo ProteinsPyramidal TractsReceptors, Cell SurfaceReceptors, SerotoninRecovery of FunctionSpinal Cord InjuriesConceptsAxonal growthSpinal Cord Injury StudyMutant miceGreater axonal growthGreater behavioral recoverySpinal cord traumaWild-type miceAxonal growth inhibitionHeterozygous mutant miceDeficient myelinNeurological recoveryCNS damageTriple-mutant miceBehavioral recoveryCord traumaFunctional recoveryNeurological functionMyelin inhibitorsAxonal regrowthReceptor mechanismsInjury studiesMyelin inhibitionDecoy receptorOptimal chanceMice
2009
Reticulon-4A (Nogo-A) Redistributes Protein Disulfide Isomerase to Protect Mice from SOD1-Dependent Amyotrophic Lateral Sclerosis
Yang YS, Harel NY, Strittmatter SM. Reticulon-4A (Nogo-A) Redistributes Protein Disulfide Isomerase to Protect Mice from SOD1-Dependent Amyotrophic Lateral Sclerosis. Journal Of Neuroscience 2009, 29: 13850-13859. PMID: 19889996, PMCID: PMC2797811, DOI: 10.1523/jneurosci.2312-09.2009.Peer-Reviewed Original ResearchMeSH KeywordsAlanineAmyotrophic Lateral SclerosisAnimalsChlorocebus aethiopsCOS CellsGlycineMaleMiceMice, CongenicMice, Inbred C57BLMice, KnockoutMice, TransgenicMolecular ChaperonesMyelin ProteinsNeuroprotective AgentsNogo ProteinsProtein Disulfide-IsomerasesSuperoxide DismutaseSuperoxide Dismutase-1Tissue DistributionConceptsAmyotrophic lateral sclerosisLateral sclerosisFatal motor neuron diseaseSubset of patientsALS disease progressionMotor neuron diseaseTransgenic mouse modelPotential therapeutic approachEndoplasmic reticulum stressHomogeneous expression patternNeuron diseaseALS pathophysiologyDisease onsetDisease progressionTherapeutic approachesMouse modelChaperone protein disulfide isomeraseReticulum stressNovel intracellular roleReticulon proteinsMiceSclerosisPatientsUnfolded protein responseNogoA
2007
Nogo receptor interacts with brain APP and Abeta to reduce pathologic changes in Alzheimer's transgenic mice.
Park JH, Strittmatter SM. Nogo receptor interacts with brain APP and Abeta to reduce pathologic changes in Alzheimer's transgenic mice. Current Alzheimer Research 2007, 4: 568-70. PMID: 18220524, PMCID: PMC2846284, DOI: 10.2174/156720507783018235.Peer-Reviewed Original ResearchConceptsTransgenic miceAlzheimer's diseasePlaque depositionAdult central nervous systemAlzheimer's transgenic miceNogo-66 receptorAmyloid β plaquesCentral nervous systemAxonal sproutingAβ accumulationΒ plaquesDystrophic neuritesPathologic changesNogo receptorNervous systemBrain APPDiseasePotential mechanistic basisMiceExpression increasesNGR modificationReceptorsNeurite responseNGRMechanistic basis
2006
Subcutaneous Nogo Receptor Removes Brain Amyloid-β and Improves Spatial Memory in Alzheimer's Transgenic Mice
Park JH, Widi GA, Gimbel DA, Harel NY, Lee DH, Strittmatter SM. Subcutaneous Nogo Receptor Removes Brain Amyloid-β and Improves Spatial Memory in Alzheimer's Transgenic Mice. Journal Of Neuroscience 2006, 26: 13279-13286. PMID: 17182778, PMCID: PMC2856604, DOI: 10.1523/jneurosci.4504-06.2006.Peer-Reviewed Original ResearchConceptsAmyloid precursor proteinTransgenic miceAlzheimer's diseaseAbeta clearanceAbeta plaque loadAlzheimer's transgenic miceImproved spatial memoryRadial arm water mazeNogo-66 receptorEffective therapeutic approachPotential therapeutic benefitSpatial memoryAmyloid-beta peptidePlaque loadAbeta levelsBrain amyloidDisease onsetAbeta productionTherapeutic approachesNogo receptorTherapeutic benefitWater mazeInverse correlationAbetaMiceThe Nogo–Nogo Receptor Pathway Limits a Spectrum of Adult CNS Axonal Growth
Cafferty WB, Strittmatter SM. The Nogo–Nogo Receptor Pathway Limits a Spectrum of Adult CNS Axonal Growth. Journal Of Neuroscience 2006, 26: 12242-12250. PMID: 17122049, PMCID: PMC2848954, DOI: 10.1523/jneurosci.3827-06.2006.Peer-Reviewed Original ResearchMeSH KeywordsAnalysis of VarianceAnimalsAxonsBehavior, AnimalCalcitonin Gene-Related PeptideCentral Nervous SystemFunctional LateralityGlial Fibrillary Acidic ProteinMiceMice, Inbred C57BLMice, KnockoutMyelin Basic ProteinMyelin ProteinsNogo ProteinsProtein Kinase CPsychomotor PerformancePyramidal TractsReceptors, PeptideSignal TransductionConceptsAxonal growthCST regenerationSpinal cord dorsal hemisectionCervical gray matterRole of NogoCorticospinal tract axonsNogo-66 receptorVivo pharmacological studiesFine motor skillsDorsal hemisectionAffected forelimbCST axonsLesion modelUnilateral pyramidotomyGray matterPharmacological studiesReceptor pathwayNogoConflicting resultsMiceMotor skillsAxonsDifferent tractsGenetic assessmentPyramidotomy