2023
TAVR explant with aortic root replacement using a homograft for an aortic rupture.
Singh S, Vallabhajosyula P, Geirsson A, Assi R. TAVR explant with aortic root replacement using a homograft for an aortic rupture. Multimedia Manual Of Cardio-Thoracic Surgery 2023, 2023 PMID: 36644957, DOI: 10.1510/mmcts.2022.101.Peer-Reviewed Original ResearchConceptsLeft coronary buttonAortic ruptureCoronary buttonsAortic rootAortic root replacementTranscatheter aortic valve prosthesisAortic valve prosthesisTAVR explantRoot replacementMale presentingCase reportTranscatheter prosthesesValve prosthesisStent frameBovine pericardiumProsthesisRuptureHaemopericardiumPseudoaneurysmHomograftsPresenting
2022
mTOR inhibition prevents angiotensin II–induced aortic rupture and pseudoaneurysm but promotes dissection in Apoe-deficient mice
He C, Jiang B, Wang M, Ren P, Murtada SI, Caulk AW, Li G, Qin L, Assi R, Lovoulos CJ, Schwartz MA, Humphrey JD, Tellides G. mTOR inhibition prevents angiotensin II–induced aortic rupture and pseudoaneurysm but promotes dissection in Apoe-deficient mice. JCI Insight 2022, 7: e155815. PMID: 35132962, PMCID: PMC8855820, DOI: 10.1172/jci.insight.155815.Peer-Reviewed Original ResearchConceptsApoE-deficient miceAngiotensin IIVascular wall cellsAortic tearAortic ruptureMTOR inhibitionSmooth muscle cell hypertrophyMatricellular proteinWall cellsSuprarenal abdominal aortaMuscle cell hypertrophyExtracellular matrix accumulationInhibition of mTORRole of mTORSubadventitial hematomaFree ruptureAortic dissectionAortic diseaseAortic aneurysmSignificant dissectionAbdominal aortaHemorrhagic lesionsExtensive dissectionMetalloproteinase expressionCell hypertrophy
2018
Adipose-derived mesenchymal stem cells accelerate diabetic wound healing in a similar fashion as bone marrow-derived cells
Guo J, Hu H, Gorecka J, Bai H, He H, Assi R, Isaji T, Wang T, Setia O, Lopes L, Gu Y, Dardik A. Adipose-derived mesenchymal stem cells accelerate diabetic wound healing in a similar fashion as bone marrow-derived cells. American Journal Of Physiology - Cell Physiology 2018, 315: c885-c896. PMID: 30404559, PMCID: PMC6336941, DOI: 10.1152/ajpcell.00120.2018.Peer-Reviewed Original ResearchMeSH KeywordsAdipose TissueAnimalsBone Marrow CellsCell ProliferationCell SurvivalDiabetes Mellitus, ExperimentalGene Expression Regulation, DevelopmentalHumansMesenchymal Stem Cell TransplantationMesenchymal Stem CellsMiceNeovascularization, PhysiologicPlatelet Endothelial Cell Adhesion Molecule-1Vascular Endothelial Growth Factor AWound HealingConceptsBone marrow-derived mesenchymal stem cellsBiomimetic collagen scaffoldStem cellsDiabetic wound healingMesenchymal stem cellsHuman diabeticsWound healingMouse modelMarrow-derived mesenchymal stem cellsSimilar extentBone marrow-derived cellsNotch signalingHuman diabetic woundsDiabetic C57BL/6 miceAdipose-derived mesenchymal stem cellsCell survivalMarrow-derived cellsEndothelial cell densityDiabetic mouse modelNumber of macrophagesNude mouse modelTissue-derived stem cellsCD31-positive cellsCellular proliferationSmooth muscle cells
2017
CD44 Promotes Inflammation and Extracellular Matrix Production During Arteriovenous Fistula Maturation
Kuwahara G, Hashimoto T, Tsuneki M, Yamamoto K, Assi R, Foster TR, Hanisch JJ, Bai H, Hu H, Protack CD, Hall MR, Schardt JS, Jay SM, Madri JA, Kodama S, Dardik A. CD44 Promotes Inflammation and Extracellular Matrix Production During Arteriovenous Fistula Maturation. Arteriosclerosis Thrombosis And Vascular Biology 2017, 37: 1147-1156. PMID: 28450292, PMCID: PMC5467640, DOI: 10.1161/atvbaha.117.309385.Peer-Reviewed Original ResearchConceptsExtracellular matrix depositionKnockout miceExtracellular matrix componentsExtracellular matrix productionMatrix depositionAdhesion molecule-1 expressionM2 macrophagesProtein 1Matrix productionCell adhesion molecule-1 expressionMolecule-1 expressionProtein expressionMatrix componentsCD44 knockout miceProtein-1 expressionMajor receptorCD44 activityMaturationVascular cell adhesion molecule-1 expressionAdhesion moleculesExpressionCD44 mRNAChemoattractant protein-1 expressionWild-type C57BL/6JArteriovenous fistula
2016
Delivery of mesenchymal stem cells in biomimetic engineered scaffolds promotes healing of diabetic ulcers
Assi R, Foster TR, He H, Stamati K, Bai H, Huang Y, Hyder F, Rothman D, Shu C, Homer-Vanniasinkam S, Cheema U, Dardik A. Delivery of mesenchymal stem cells in biomimetic engineered scaffolds promotes healing of diabetic ulcers. Regenerative Medicine 2016, 11: 245-260. PMID: 26986810, PMCID: PMC4976993, DOI: 10.2217/rme-2015-0045.Peer-Reviewed Original Research
2014
Temporal Regulation of venous Extracellular Matrix Components during Arteriovenous Fistula Maturation
Hall MR, Yamamoto K, Protack CD, Tsuneki M, Kuwahara G, Assi R, Brownson KE, Bai H, Madri JA, Dardik A. Temporal Regulation of venous Extracellular Matrix Components during Arteriovenous Fistula Maturation. The Journal Of Vascular Access 2014, 16: 93-106. PMID: 25262757, PMCID: PMC4405006, DOI: 10.5301/jva.5000290.Peer-Reviewed Original ResearchConceptsExtracellular matrix componentsTemporal regulationECM componentsStructural proteinsMatrix componentsGene microarray analysisMatrix metalloproteinasesRegulatory proteinsMicroarray analysisNon-collagenous proteinsDistinct temporal patternsECM degradationTemporal patternsProteinProtein expressionElastin expressionExpressionMaturationOsteopontin expressionProtease inhibitorsHuman AVF maturationRegulationTissue inhibitorDays of maturationMetalloproteinase-1PDE‐5 inhibition improves skin flap viability in rats that are exposed to nicotine
Shah A, Pfaff MJ, Assi R, Wu W, Steinbacher DM. PDE‐5 inhibition improves skin flap viability in rats that are exposed to nicotine. Microsurgery 2014, 34: 390-397. PMID: 24610727, DOI: 10.1002/micr.22237.Peer-Reviewed Original ResearchConceptsPDE-5 inhibitionSkin flap necrosisFlap necrosisNicotine SCSkin flapsPostoperative day 1Skin flap survivalPhosphodiesterase-5 inhibitionSildenafil-treated groupSkin flap viabilityDose-dependent reductionDays of treatmentWestern blot analysisDaily groupMcFarlane flapsFlap survivalFluorescence angiographyBlood flowGroup 2Group 1Blinded observersDay 1Flap viabilityDay 7Group 3Vein graft adaptation and fistula maturation in the arterial environment
Lu DY, Chen EY, Wong DJ, Yamamoto K, Protack CD, Williams WT, Assi R, Hall MR, Sadaghianloo N, Dardik A. Vein graft adaptation and fistula maturation in the arterial environment. Journal Of Surgical Research 2014, 188: 162-173. PMID: 24582063, PMCID: PMC3972303, DOI: 10.1016/j.jss.2014.01.042.Peer-Reviewed Original ResearchConceptsArteriovenous fistulaVein graftsVein graft adaptationVenous adaptationGraft adaptationArterial environmentCommon surgical procedureAVF maturationDifferent hemodynamic conditionsFistula maturationVenous dilationUnderlying molecular mechanismsIntimal thickeningSurgical proceduresWall thickeningHemodynamic conditions
2013
The mouse aortocaval fistula recapitulates human arteriovenous fistula maturation
Yamamoto K, Protack CD, Tsuneki M, Hall MR, Wong DJ, Lu DY, Assi R, Williams WT, Sadaghianloo N, Bai H, Miyata T, Madri JA, Dardik A. The mouse aortocaval fistula recapitulates human arteriovenous fistula maturation. AJP Heart And Circulatory Physiology 2013, 305: h1718-h1725. PMID: 24097429, PMCID: PMC3882542, DOI: 10.1152/ajpheart.00590.2013.Peer-Reviewed Original ResearchConceptsArteriovenous fistulaMaturation failureHigh-resolution Doppler ultrasoundArteriovenous fistula maturationFirst animal modelMature arteriovenous fistulaSmooth muscle cellsHuman AVF maturationAVF maturationAortocaval fistulaAVF failureFistula maturationImmediate thrombosisVenous adaptationExcellent patencyDoppler ultrasoundAnimal modelsDay 21Human patientsNeedle punctureDay 42Muscle cellsFistulaArterial environmentFailure