2022
Chapter 11 Oncometabolites, epigenetic marks, and DNA repair
Dow J, Glazer P. Chapter 11 Oncometabolites, epigenetic marks, and DNA repair. 2022, 191-202. DOI: 10.1016/b978-0-323-91081-1.00008-x.Peer-Reviewed Original ResearchDNA damage repairJmjC domain-containing histone demethylasesDamage repairDouble-strand break sitesHallmarks of cancerEpigenetic marksHistone demethylasesEpigenetic signalingDNA demethylaseDependent dioxygenasesEpigenetic mechanismsDNA repairMajor translational impactGenomic instabilityMethylation signalsRepair pathwaysBreak siteDNA hypermethylationDNA damageΑ-ketoglutarateGlobal histoneOncometaboliteCancer cellsCompetitive inhibitorProfound sensitivity
2021
Vulnerability of IDH1-Mutant Cancers to Histone Deacetylase Inhibition via Orthogonal Suppression of DNA Repair
Dow J, Krysztofiak A, Liu Y, Colon-Rios DA, Rogers FA, Glazer PM. Vulnerability of IDH1-Mutant Cancers to Histone Deacetylase Inhibition via Orthogonal Suppression of DNA Repair. Molecular Cancer Research 2021, 19: 2057-2067. PMID: 34535560, PMCID: PMC8642278, DOI: 10.1158/1541-7786.mcr-21-0456.Peer-Reviewed Original ResearchConceptsHistone deacetylase inhibitor vorinostatPatient-derived tumor xenograftsHomology-directed repairIsocitrate dehydrogenase 1/2 mutationsHistone deacetylase inhibitionIDH1 mutant cellsGreater cell deathHDACi treatmentInhibitor vorinostatTumor xenograftsDeacetylase inhibitionIDH1/2 mutationsPotential biomarkersSpecific cancersMutant cancersCancerCancer cellsDNA repair defectsMalignancyVorinostatDNA double-strand breaksGliomasHistone hypermethylationCell deathPARPiBBIT20 inhibits homologous DNA repair with disruption of the BRCA1–BARD1 interaction in breast and ovarian cancer
Raimundo L, Paterna A, Calheiros J, Ribeiro J, Cardoso DSP, Piga I, Neto SJ, Hegan D, Glazer PM, Indraccolo S, Mulhovo S, Costa JL, Ferreira M, Saraiva L. BBIT20 inhibits homologous DNA repair with disruption of the BRCA1–BARD1 interaction in breast and ovarian cancer. British Journal Of Pharmacology 2021, 178: 3627-3647. PMID: 33899955, PMCID: PMC9124438, DOI: 10.1111/bph.15506.Peer-Reviewed Original ResearchConceptsTriple-negative breastOvarian cancerXenograft mouse modelMouse modelAntitumour activityAdvanced ovarian cancerCancer cellsPatient-derived cell linesHomologous DNA repairOvarian cancer cellsNon-malignant cellsPatient-derived cellsMarked synergistic effectAvailable therapiesCombination therapyCell cycle arrestReactive oxygen species generationSide effectsDNA repair-related genesSingle agentTherapeutic outcomesCancerOxygen species generationPersonalized treatmentResistant cancers
2020
Ku80-Targeted pH-Sensitive Peptide–PNA Conjugates Are Tumor Selective and Sensitize Cancer Cells to Ionizing Radiation
Kaplan AR, Pham H, Liu Y, Oyaghire S, Bahal R, Engelman DM, Glazer PM. Ku80-Targeted pH-Sensitive Peptide–PNA Conjugates Are Tumor Selective and Sensitize Cancer Cells to Ionizing Radiation. Molecular Cancer Research 2020, 18: 873-882. PMID: 32098827, PMCID: PMC7272299, DOI: 10.1158/1541-7786.mcr-19-0661.Peer-Reviewed Original ResearchConceptsCancer cellsTumor cellsLocal tumor irradiationTumor-selective radiosensitizationMouse tumor modelsKu80 expressionNovel agentsTumor irradiationTumor growthTumor microenvironmentTumor modelRadiation treatmentTherapeutic agentsSubcutaneous mouse tumor modelTumorsMiceCancer therapyHealthy tissueAcute toxicitySpecific targetingSelective effectPNA antisenseTumor-SelectiveAcidic culture conditionsSensitize cancer cells
2017
A cell-penetrating antibody inhibits human RAD51 via direct binding
Turchick A, Hegan DC, Jensen RB, Glazer PM. A cell-penetrating antibody inhibits human RAD51 via direct binding. Nucleic Acids Research 2017, 45: 11782-11799. PMID: 29036688, PMCID: PMC5714174, DOI: 10.1093/nar/gkx871.Peer-Reviewed Original ResearchConceptsHomology-directed repairMolecular basisDirect bindingSynthetic lethal killingPre-clinical developmentBRCA2-deficient cancer cellsCell-penetrating antibodiesAnti-cancer agentsLupus autoantibodiesHuman Rad51DNA repairDNA bindingRAD51N-terminusCancer cellsSilico molecular modelingFunction mutationsCancer therapySpecific inhibitorDNANovel inhibitorsAttractive targetComplementarity-determining regionsMolecular modelingCell penetration
2007
Co-Repression of Mismatch Repair Gene Expression by Hypoxia in Cancer Cells: Role of the Myc/Max Network
Bindra R, Glazer P. Co-Repression of Mismatch Repair Gene Expression by Hypoxia in Cancer Cells: Role of the Myc/Max Network. International Journal Of Radiation Oncology • Biology • Physics 2007, 69: s613. DOI: 10.1016/j.ijrobp.2007.07.1928.Peer-Reviewed Original Research
1997
Role of DNA mismatch repair in the cytotoxicity of ionizing radiation.
Fritzell J, Narayanan L, Baker S, Bronner C, Andrew S, Prolla T, Bradley A, Jirik F, Liskay R, Glazer P. Role of DNA mismatch repair in the cytotoxicity of ionizing radiation. Cancer Research 1997, 57: 5143-7. PMID: 9371516.Peer-Reviewed Original ResearchConceptsMammalian cellsCellular responsesCell linesTranscription-coupled repairMMR systemWild-type cellsDNA-damaging agentsWild-type cell linesMMR-deficient cellsDNA mismatch repairDNA mismatch repair systemMismatch repair systemActive genesFutile repairMMR factorsAlkylation damageMismatch repairReplication errorsDNA damageRepair systemRelated miceCancer cellsClonogenic survivalMMR genesGenes