1997
Biochemical and mutational studies of the 5′-3′ exonuclease of DNA polymerase I of Escherichia coli11Edited by A. R. Fersht
Xu Y, Derbyshire V, Ng K, Sun X, Grindley N, Joyce C. Biochemical and mutational studies of the 5′-3′ exonuclease of DNA polymerase I of Escherichia coli11Edited by A. R. Fersht. Journal Of Molecular Biology 1997, 268: 284-302. PMID: 9159471, DOI: 10.1006/jmbi.1997.0967.Peer-Reviewed Original Research
1995
The tyrosine‐6 hydroxyl of γδ resolvase is not required for the DNA cleavage and rejoining reactions
Leschziner A, Boocock M, Grindley N. The tyrosine‐6 hydroxyl of γδ resolvase is not required for the DNA cleavage and rejoining reactions. Molecular Microbiology 1995, 15: 865-870. PMID: 7596288, DOI: 10.1111/j.1365-2958.1995.tb02356.x.Peer-Reviewed Original ResearchDeoxynucleoside Triphosphate and Pyrophosphate Binding Sites in the Catalytically Competent Ternary Complex for the Polymerase Reaction Catalyzed by DNA Polymerase I (Klenow Fragment) (∗)
Astatke M, Grindley N, Joyce C. Deoxynucleoside Triphosphate and Pyrophosphate Binding Sites in the Catalytically Competent Ternary Complex for the Polymerase Reaction Catalyzed by DNA Polymerase I (Klenow Fragment) (∗). Journal Of Biological Chemistry 1995, 270: 1945-1954. PMID: 7829532, DOI: 10.1074/jbc.270.4.1945.Peer-Reviewed Original ResearchAmino Acid SequenceBacteriaBase SequenceBinding SitesConserved SequenceDeoxyribonucleotidesDiphosphatesDNA Polymerase IDNA PrimersKineticsMacromolecular SubstancesModels, MolecularMolecular Sequence DataMutagenesis, Site-DirectedOligodeoxyribonucleotidesPoint MutationPolymerase Chain ReactionProtein Structure, SecondarySaccharomyces cerevisiaeSequence Homology, Amino Acid