2015
NLRP3 deficiency protects from type 1 diabetes through the regulation of chemotaxis into the pancreatic islets
Hu C, Ding H, Li Y, Pearson JA, Zhang X, Flavell RA, Wong FS, Wen L. NLRP3 deficiency protects from type 1 diabetes through the regulation of chemotaxis into the pancreatic islets. Proceedings Of The National Academy Of Sciences Of The United States Of America 2015, 112: 11318-11323. PMID: 26305961, PMCID: PMC4568693, DOI: 10.1073/pnas.1513509112.Peer-Reviewed Original ResearchMeSH KeywordsAdoptive TransferAnimalsCarrier ProteinsCell MovementChemokine CCL5Chemokine CXCL10ChemotaxisDiabetes Mellitus, Type 1Gene ExpressionHumansInflammasomesInterferon Regulatory Factor-1Interleukin-1betaIslets of LangerhansMice, Inbred C57BLMice, Inbred NODMice, KnockoutMice, SCIDNLR Family, Pyrin Domain-Containing 3 ProteinReceptors, CCR5Receptors, CXCR3Reverse Transcriptase Polymerase Chain ReactionSignal TransductionTime FactorsT-LymphocytesConceptsType 1 diabetesLeucine-rich repeatsNonobese diabetic (NOD) mouse modelPancreatic isletsRegulation of chemotaxisTreatment of T1D.Role of TLRsDevelopment of T1DChemokine receptor CCR5Diabetic mouse modelT cell migrationT cell activationPresence of NLRP3Pancreatic islet cellsNLRP3 ablationOligomerization domainNLRP3 inflammasomeReceptor CCR5T cellsTh1 differentiationInflammasome pathwayAdaptive immunityMouse modelAnimal modelsIslet cells
2012
TLR4 regulates cardiac lipid accumulation and diabetic heart disease in the nonobese diabetic mouse model of type 1 diabetes
Dong B, Qi D, Yang L, Huang Y, Xiao X, Tai N, Wen L, Wong F. TLR4 regulates cardiac lipid accumulation and diabetic heart disease in the nonobese diabetic mouse model of type 1 diabetes. AJP Heart And Circulatory Physiology 2012, 303: h732-h742. PMID: 22842069, PMCID: PMC3468457, DOI: 10.1152/ajpheart.00948.2011.Peer-Reviewed Original ResearchMeSH KeywordsAMP-Activated Protein KinasesAnimalsBlood GlucoseCell LineDiabetes Mellitus, Type 1Diabetic CardiomyopathiesDisease Models, AnimalFatty Acids, NonesterifiedJNK Mitogen-Activated Protein KinasesLipid MetabolismLipoprotein LipaseMiceMice, Inbred C57BLMice, Inbred NODMice, KnockoutMyeloid Differentiation Factor 88MyocardiumMyocytes, CardiacOleic AcidP38 Mitogen-Activated Protein KinasesPhosphorylationRatsRNA InterferenceTime FactorsToll-Like Receptor 4TriglyceridesConceptsDiabetic heart diseaseType 1 diabetesHeart diseaseNOD animalsLipoprotein lipaseLipid accumulationNonobese diabetic (NOD) mouse modelLeft ventricular developed pressureCardiac fatty acid metabolismMyeloid differentiation primary response geneCardiac lipid accumulationControl nondiabetic miceGreater ejection fractionRole of TLR4Nonobese diabetic (NOD) miceOnset of diabetesVentricular developed pressureDevelopment of diabetesToll-like receptorsGreater fractional shorteningDiabetic mouse modelPlasma triglyceride levelsWild-type NODLower triglyceride accumulationCellular lipid accumulation
2008
Innate immunity and intestinal microbiota in the development of Type 1 diabetes
Wen L, Ley RE, Volchkov PY, Stranges PB, Avanesyan L, Stonebraker AC, Hu C, Wong FS, Szot GL, Bluestone JA, Gordon JI, Chervonsky AV. Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature 2008, 455: 1109-1113. PMID: 18806780, PMCID: PMC2574766, DOI: 10.1038/nature07336.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBacteriaCD8-Positive T-LymphocytesDiabetes Mellitus, Type 1FemaleImmunity, InnateInterferon-gammaIntestinesIslets of LangerhansMaleMiceMice, Inbred NODMice, KnockoutMice, SCIDMolecular Sequence DataMyeloid Differentiation Factor 88PhylogenySpecific Pathogen-Free OrganismsTime FactorsConceptsType 1 diabetesNOD miceInnate immunityRapid innate immune responseDevelopment of diabetesNormal human gutInnate immune responseAdaptor protein MyD88Autoimmune diabetesTherapeutic optionsImmune responseNegative miceIntestinal microbiotaProtein MyD88DiabetesMiceGut microbesImmunityHuman gutMicrobial productsMyD88Influence predispositionIncidence
2007
CD86 Has Sustained Costimulatory Effects on CD8 T Cells
Thomas IJ, de Marquesini L, Ravanan R, Smith RM, Guerder S, Flavell RA, Wraith DC, Wen L, Wong FS. CD86 Has Sustained Costimulatory Effects on CD8 T Cells. The Journal Of Immunology 2007, 179: 5936-5946. PMID: 17947667, PMCID: PMC2629533, DOI: 10.4049/jimmunol.179.9.5936.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsB7-1 AntigenB7-2 AntigenCD8-Positive T-LymphocytesCell DifferentiationCell ProliferationCells, CulturedCytokinesDiabetes MellitusGene Expression RegulationHealthHumansIslets of Langerhans TransplantationMiceMice, TransgenicPromoter Regions, GeneticRatsReceptor, InsulinSurvival RateTime FactorsTransgenesConceptsCD8 T cellsT cellsT cell activationCD86 costimulationCell activationCytotoxic T-cell activationTransfer of diabetesOld NOD miceInhibitory molecule expressionRat insulin promoterGreater sustained activityNOD isletsRecurrent diabetesNOD miceDiabetes onsetDiabetic miceCostimulatory moleculesCTLA-4Cytokine secretionMolecule expressionCostimulatory effectImmune responseCD80CD86CD80 costimulation
2002
Induction and acceleration of insulitis/diabetes in mice with a viral mimic (polyinosinic-polycytidylic acid) and an insulin self-peptide
Moriyama H, Wen L, Abiru N, Liu E, Yu L, Miao D, Gianani R, Wong F, Eisenbarth G. Induction and acceleration of insulitis/diabetes in mice with a viral mimic (polyinosinic-polycytidylic acid) and an insulin self-peptide. Proceedings Of The National Academy Of Sciences Of The United States Of America 2002, 99: 5539-5544. PMID: 11943868, PMCID: PMC122805, DOI: 10.1073/pnas.082120099.Peer-Reviewed Original ResearchConceptsT lymphocytesB7-1 transgenic miceBALB/c miceAnti-islet autoimmunityExperimental autoimmune diabetesAutoreactive T lymphocytesB7-1 moleculeCD4 T lymphocytesType 1 diabetesPolyinosinic-polycytidylic acidAutoimmune diabetesInsulin autoantibodiesC micePeptide immunizationSimultaneous administrationDisease inductionMurine modelMouse modelDiabetesTransgenic miceInsulin peptidesMiceImmunizationPolyICViral mimicAnalysis of structure and function relationships of an autoantigenic peptide of insulin bound to H-2Kd that stimulates CD8 T cells in insulin-dependent diabetes mellitus
Wong F, Moustakas A, Wen L, Papadopoulos G, Janeway C. Analysis of structure and function relationships of an autoantigenic peptide of insulin bound to H-2Kd that stimulates CD8 T cells in insulin-dependent diabetes mellitus. Proceedings Of The National Academy Of Sciences Of The United States Of America 2002, 99: 5551-5556. PMID: 11943852, PMCID: PMC122807, DOI: 10.1073/pnas.072037299.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAutoantigensCD8-Positive T-LymphocytesCell DivisionCell LineChromium RadioisotopesDiabetes Mellitus, Type 1Dose-Response Relationship, DrugH-2 AntigensInsulinInterferon-gammaMiceMice, Inbred NODModels, MolecularPeptidesProtein BindingReceptor, InsulinStructure-Activity RelationshipTime FactorsConceptsT cellsCD8 T cell clonesInsulin-dependent diabetes mellitusInduction of CD8CD8 T cellsPathogenic T cellsT cell clonesT cell stimulationSmall glycine residueMHC-peptide complexesDiabetes mellitusAutoantigenic peptidesH-2KdCell clonesGlutamate residuesHydrophobic residuesGlycine residueReceptor interaction sitesCell stimulationFunctional assaysInteraction sitesFunction relationshipsPeptide substitutionProductive interactionHeavy chain