A Markov random field model-based approach for differentially expressed gene detection from single-cell RNA-seq data
Zhu B, Li H, Zhang L, Chandra SS, Zhao H. A Markov random field model-based approach for differentially expressed gene detection from single-cell RNA-seq data. Briefings In Bioinformatics 2022, 23: bbac166. PMID: 35514182, PMCID: PMC9487630, DOI: 10.1093/bib/bbac166.Peer-Reviewed Original ResearchConceptsDE genesSeq dataSingle-cell RNA sequencing technologyDifferential expressionSingle-cell RNA-seq dataIdentification of genesRNA sequencing technologySpecific differential expressionSingle-cell resolutionRNA-seq dataMarkov random field modelMarkov random field model-based approachSimilar cell typesNovel statistical modelRandom field modelComplex biological systemsBiological pathwaysGene detectionGenesCell typesStatistical modelMouse datasetsField modelBiological systemsReal data