2020
Partially Differentiated Neuroretinal Cells Promote Maturation of the Retinal Pigment Epithelium
Singh D, Chen X, Xia T, Ghiassi-Nejad M, Tainsh L, Adelman RA, Rizzolo LJ. Partially Differentiated Neuroretinal Cells Promote Maturation of the Retinal Pigment Epithelium. Investigative Ophthalmology & Visual Science 2020, 61: 9-9. PMID: 33151282, PMCID: PMC7671856, DOI: 10.1167/iovs.61.13.9.Peer-Reviewed Original ResearchConceptsRetinal pigment epitheliumRetinal progenitor cellsTransepithelial electrical resistanceNeurosensory retinaPigment epitheliumHuman fetal retinal pigment epitheliumRecoverin-positive cellsFetal retinal pigment epitheliumGanglion cell layerAbility of RPERPE signature genesRed/green opsinTranswell filter insertsStem cellsQuantitative RT-PCRGlial markersHuman stem cellsExpression of rhodopsinInterneuron markersBipolar cellsRetinal culturesRetinaRT-PCRProgenitor cellsPresumptive photoreceptorsClaudins regulate gene and protein expression of the retinal pigment epithelium independent of their association with tight junctions
Liu F, Xu T, Peng S, Adelman RA, Rizzolo LJ. Claudins regulate gene and protein expression of the retinal pigment epithelium independent of their association with tight junctions. Experimental Eye Research 2020, 198: 108157. PMID: 32712183, DOI: 10.1016/j.exer.2020.108157.Peer-Reviewed Original Research
2019
Disease-associated mutations of claudin-19 disrupt retinal neurogenesis and visual function
Wang SB, Xu T, Peng S, Singh D, Ghiassi-Nejad M, Adelman RA, Rizzolo LJ. Disease-associated mutations of claudin-19 disrupt retinal neurogenesis and visual function. Communications Biology 2019, 2: 113. PMID: 30937396, PMCID: PMC6433901, DOI: 10.1038/s42003-019-0355-0.Peer-Reviewed Original ResearchConceptsRetinal pigment epitheliumClaudin-19Retinal neurogenesisP1 waveOuter nuclear layerRPE signature genesARPE19 cell lineOcular involvementKidney diseaseVisual functionFamilial hypomagnesaemiaNuclear layerBipolar cellsNewborn miceOcular diseasesPigment epitheliumRetinal isomeraseDiseaseMiceHuman induced pluripotent cellsRetinal differentiationSignature genesCell linesNeurogenesisInduced pluripotent cells
2016
Claudin-3 and claudin-19 partially restore native phenotype to ARPE-19 cells via effects on tight junctions and gene expression
Peng S, Wang SB, Singh D, Zhao PY, Davis K, Chen B, Adelman RA, Rizzolo LJ. Claudin-3 and claudin-19 partially restore native phenotype to ARPE-19 cells via effects on tight junctions and gene expression. Experimental Eye Research 2016, 151: 179-189. PMID: 27593915, DOI: 10.1016/j.exer.2016.08.021.Peer-Reviewed Original Research
2015
Human Adult Retinal Pigment Epithelial Stem Cell–Derived RPE Monolayers Exhibit Key Physiological Characteristics of Native TissuePhysiology of Cultured Adult Human RPE
Blenkinsop TA, Saini JS, Maminishkis A, Bharti K, Wan Q, Banzon T, Lotfi M, Davis J, Singh D, Rizzolo LJ, Miller S, Temple S, Stern JH. Human Adult Retinal Pigment Epithelial Stem Cell–Derived RPE Monolayers Exhibit Key Physiological Characteristics of Native TissuePhysiology of Cultured Adult Human RPE. Investigative Ophthalmology & Visual Science 2015, 56: 7085-7099. PMID: 26540654, PMCID: PMC4640474, DOI: 10.1167/iovs.14-16246.Peer-Reviewed Original ResearchTRP Channels Localize to Subdomains of the Apical Plasma Membrane in Human Fetal Retinal Pigment EpitheliumTRP Channels of Human Fetal RPE
Zhao PY, Gan G, Peng S, Wang SB, Chen B, Adelman RA, Rizzolo LJ. TRP Channels Localize to Subdomains of the Apical Plasma Membrane in Human Fetal Retinal Pigment EpitheliumTRP Channels of Human Fetal RPE. Investigative Ophthalmology & Visual Science 2015, 56: 1916-1923. PMID: 25736794, PMCID: PMC4364639, DOI: 10.1167/iovs.14-15738.Peer-Reviewed Original ResearchConceptsHuman fetal RPETRP channelsApical membraneFetal RPEApical plasma membraneCell-cell contactTransepithelial electrical resistanceTransient receptor potential channelsTight junctionsSubcellular localizationInhibitor of calpainPrimary ciliaRT-PCRPlasma membraneBasal channel activityQuantitative RT-PCRApical tight junctionsExpression of TRPC4Ion channelsBasolateral surfaceApical microvilliApical surfaceChannel activityConfocal microscopyTRPM3
2014
Barrier properties of cultured retinal pigment epithelium
Rizzolo LJ. Barrier properties of cultured retinal pigment epithelium. Experimental Eye Research 2014, 126: 16-26. PMID: 24731966, DOI: 10.1016/j.exer.2013.12.018.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus Statements
2013
Engineering a Blood-Retinal Barrier With Human Embryonic Stem Cell-Derived Retinal Pigment Epithelium: Transcriptome and Functional Analysis
Peng S, Gan G, Qiu C, Zhong M, An H, Adelman RA, Rizzolo LJ. Engineering a Blood-Retinal Barrier With Human Embryonic Stem Cell-Derived Retinal Pigment Epithelium: Transcriptome and Functional Analysis. Stem Cells Translational Medicine 2013, 2: 534-544. PMID: 23734062, PMCID: PMC3697821, DOI: 10.5966/sctm.2012-0134.Peer-Reviewed Original ResearchConceptsRetinal pigment epitheliumBlood-retinal barrierHuman retinal pigment epitheliumPigment epitheliumHuman fetal retinal pigment epitheliumOuter blood-retinal barrierTight junctionsFetal retinal pigment epitheliumEmbryonic stem cell-derived retinal pigment epitheliumAdult retinal pigment epitheliumQuantitative reverse transcription polymerase chain reactionMaturation of hESCReverse transcription-polymerase chain reactionTranscription-polymerase chain reactionHuman embryonic stem cell-derived retinal pigment epitheliumStem cell-derived retinal pigment epitheliumRPE replacement therapyPanel of genesReplacement therapyAnimal modelsHuman embryonic stem cellsRetinal degenerationRPE functionSerum-free mediumHuman retina
2012
Effects of Proinflammatory Cytokines on the Claudin-19 Rich Tight Junctions of Human Retinal Pigment EpitheliumCytokine Effects on RPE Tight Junctions
Peng S, Gan G, Rao VS, Adelman RA, Rizzolo LJ. Effects of Proinflammatory Cytokines on the Claudin-19 Rich Tight Junctions of Human Retinal Pigment EpitheliumCytokine Effects on RPE Tight Junctions. Investigative Ophthalmology & Visual Science 2012, 53: 5016-5028. PMID: 22761260, PMCID: PMC3410691, DOI: 10.1167/iovs.11-8311.Peer-Reviewed Original ResearchConceptsHuman fetal RPEEffects of TNFαTransepithelial electrical resistanceProinflammatory cytokinesClaudin-19Tight junctionsAge-related macular degenerationZO-1Effects of cytokinesApical sideSubclinical inflammationTumor necrosisMacular degenerationTNFα receptorsOcular diseasesTNFαSerum-free mediumClaudin-3RPE tight junctionsFetal RPECytokinesClaudin-2Confocal immunofluorescence microscopyInhibitor of apoptosis
2011
Integration of tight junctions and claudins with the barrier functions of the retinal pigment epithelium
Rizzolo LJ, Peng S, Luo Y, Xiao W. Integration of tight junctions and claudins with the barrier functions of the retinal pigment epithelium. Progress In Retinal And Eye Research 2011, 30: 296-323. PMID: 21704180, DOI: 10.1016/j.preteyeres.2011.06.002.Peer-Reviewed Original ResearchConceptsRetinal pigment epitheliumOuter retinaPigment epitheliumTight junctionsBarrier functionOuter blood-retinal barrierBlood-retinal barrierHuman retinal pigment epitheliumBlood-tissue barriersTight junctional proteinsPhotoreceptor layerNeural retinaMetabolic alterationsRetinaEpitheliumClaudin compositionTransepithelial diffusionStem cellsJunctional proteinsClaudinsClaudin-19 and the Barrier Properties of the Human Retinal Pigment Epithelium
Peng S, Rao VS, Adelman RA, Rizzolo LJ. Claudin-19 and the Barrier Properties of the Human Retinal Pigment Epithelium. Investigative Ophthalmology & Visual Science 2011, 52: 1392-1403. PMID: 21071746, PMCID: PMC3101667, DOI: 10.1167/iovs.10-5984.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsMeSH KeywordsCells, CulturedClaudinsElectric ImpedanceFluorescent Antibody Technique, IndirectGene SilencingGestational AgeHumansImmunoblottingMembrane ProteinsOccludinPermeabilityPolyethylene GlycolsRetinal Pigment EpitheliumReverse Transcriptase Polymerase Chain ReactionRNA, MessengerRNA, Small InterferingTight JunctionsConceptsRetinal pigment epitheliumTransepithelial electrical resistanceHuman retinal pigment epitheliumHuman fetal RPECultured human fetal retinal pigment epitheliumPigment epitheliumClaudin-19Retinal sideHuman fetal retinal pigment epitheliumSpread of edemaFetal retinal pigment epitheliumFetal human retinal pigment epitheliumEffect of serumTight junctionsRPE permeabilityQuantitative RT-PCRChoroidal capillariesSubpopulation of cellsClaudin-1RPE barrierClaudin-3RPE tight junctionsRT-PCREpitheliumSerum
2009
Minimal Effects of VEGF and Anti-VEGF Drugs on the Permeability or Selectivity of RPE Tight Junctions
Peng S, Adelman RA, Rizzolo LJ. Minimal Effects of VEGF and Anti-VEGF Drugs on the Permeability or Selectivity of RPE Tight Junctions. Investigative Ophthalmology & Visual Science 2009, 51: 3216-3225. PMID: 20042644, PMCID: PMC2891474, DOI: 10.1167/iovs.09-4162.Peer-Reviewed Original ResearchAngiogenesis InhibitorsAntibodies, MonoclonalAntibodies, Monoclonal, HumanizedBevacizumabBlood-Retinal BarrierCapillary PermeabilityCells, CulturedClaudinsElectric ImpedanceEnzyme-Linked Immunosorbent AssayFluorescent Antibody Technique, IndirectGene ExpressionHumansImmunoblottingPolyethylene GlycolsPotassiumRanibizumabRetinal Pigment EpitheliumReverse Transcriptase Polymerase Chain ReactionRNA, MessengerSodiumTight JunctionsVascular Endothelial Growth Factor A
2008
Diffusible retinal secretions regulate the expression of tight junctions and other diverse functions of the retinal pigment epithelium.
Sun R, Peng S, Chen X, Zhang H, Rizzolo LJ. Diffusible retinal secretions regulate the expression of tight junctions and other diverse functions of the retinal pigment epithelium. Molecular Vision 2008, 14: 2237-62. PMID: 19057659, PMCID: PMC2593753.Peer-Reviewed Original ResearchMeSH KeywordsActinsAdherens JunctionsAnimalsCell MembraneCells, CulturedChick EmbryoCluster AnalysisCulture Media, ConditionedDiffusionElectric ImpedanceExtracellular MatrixGene Expression ProfilingGene Expression Regulation, DevelopmentalGenomeIon ChannelsKineticsMelaninsMembrane ProteinsMicrotubulesOligonucleotide Array Sequence AnalysisPhagocytosisRetinal Pigment EpitheliumRNA, MessengerSubcellular FractionsTight JunctionsVisual PathwaysConceptsGene expression
2006
Expression of JAM-A, AF-6, PAR-3 and PAR-6 during the assembly and remodeling of RPE tight junctions
Luo Y, Fukuhara M, Weitzman M, Rizzolo LJ. Expression of JAM-A, AF-6, PAR-3 and PAR-6 during the assembly and remodeling of RPE tight junctions. Brain Research 2006, 1110: 55-63. PMID: 16859655, DOI: 10.1016/j.brainres.2006.06.059.Peer-Reviewed Original Research
2004
The apical and basal environments of the retinal pigment epithelium regulate the maturation of tight junctions during development
Rahner C, Fukuhara M, Peng S, Kojima S, Rizzolo LJ. The apical and basal environments of the retinal pigment epithelium regulate the maturation of tight junctions during development. Journal Of Cell Science 2004, 117: 3307-3318. PMID: 15226402, DOI: 10.1242/jcs.01181.Peer-Reviewed Original ResearchAnimalsCell SeparationCells, CulturedChick EmbryoCulture Media, ConditionedDNA PrimersElectric ImpedanceElectrophysiologyFibroblastsFreeze FracturingGene Expression Regulation, DevelopmentalMicroscopy, FluorescenceNerve Tissue ProteinsPigment Epithelium of EyePolymerase Chain ReactionRetinaReverse Transcriptase Polymerase Chain ReactionRNA, MessengerTight JunctionsTime Factors
2003
Apical and Basal Regulation of the Permeability of the Retinal Pigment Epithelium
Peng S, Rahner C, Rizzolo LJ. Apical and Basal Regulation of the Permeability of the Retinal Pigment Epithelium. Investigative Ophthalmology & Visual Science 2003, 44: 808-817. PMID: 12556417, DOI: 10.1167/iovs.02-0473.Peer-Reviewed Original Research
2000
Differential regulation of tight junction permeability during development of the retinal pigment epithelium
Ban Y, Rizzolo L. Differential regulation of tight junction permeability during development of the retinal pigment epithelium. American Journal Of Physiology - Cell Physiology 2000, 279: c744-c750. PMID: 10942725, DOI: 10.1152/ajpcell.2000.279.3.c744.Peer-Reviewed Original ResearchConceptsRetinal pigment epitheliumPigment epitheliumBlood-brain barrierEmbryonic ageTight junctionsTight junction permeabilityLow calcium mediumRPE developmentAcetylneuraminic acidMannitol permeabilityJunction permeabilityEpithelial regionsCulture modelDifferent subpopulationsParacellular diffusionEpitheliumDifferential regulationAgeOrder of permeationTwo secreted retinal factors regulate different stages of development of the outer blood–retinal barrier
Ban Y, Wilt S, Rizzolo L. Two secreted retinal factors regulate different stages of development of the outer blood–retinal barrier. Brain Research 2000, 119: 259-267. PMID: 10675776, DOI: 10.1016/s0165-3806(99)00183-2.Peer-Reviewed Original ResearchMeSH KeywordsAdrenergic AgonistsAnimalsBiological TransportBlood-Brain BarrierCatecholaminesCell FractionationCells, CulturedChick EmbryoChromatography, GelCulture Media, ConditionedDopamine AgonistsElectric ImpedanceEndopeptidasesEye ProteinsIndolesPigment Epithelium of EyeSerotonin Receptor AgonistsTight JunctionsConceptsRetinal pigment epitheliumBlood-retinal barrierTransepithelial electrical resistanceOuter blood-retinal barrierBlood-brain barrierEffects of astrocytesCultured retinal pigment epitheliumChick retinal pigment epitheliumPigment epitheliumNeural retinaRetinal factorsChick retinaRPE barrierRPE cellsRetinaEndothelial regionAstrocytesTight junctionsCulture modelDiffusible factorsDifferent stagesActive factorsJunction developmentMultistep processFactors
1993
Diffusible, retinal factors stimulate the barrier properties of junctional complexes in the retinal pigment epithelium
Rizzolo L, Li Z. Diffusible, retinal factors stimulate the barrier properties of junctional complexes in the retinal pigment epithelium. Journal Of Cell Science 1993, 106: 859-867. PMID: 8308068, DOI: 10.1242/jcs.106.3.859.Peer-Reviewed Original ResearchApical Orientation of the Microtubule Organizing Center and Associated γ-Tubulin during the Polarization of the Retinal Pigment Epithelium in Vivo
Rizzolo L, Joshi H. Apical Orientation of the Microtubule Organizing Center and Associated γ-Tubulin during the Polarization of the Retinal Pigment Epithelium in Vivo. Developmental Biology 1993, 157: 147-156. PMID: 8482407, DOI: 10.1006/dbio.1993.1119.Peer-Reviewed Original ResearchConceptsMicrotubule arraysCell polarityEmbryonic day 3Apical membraneGamma-tubulin fociJunctional complexesSimple epithelial cellsMicrotubule organizing centerDevelopment of epitheliaCentrosomal proteinsJuxtanuclear regionΓ-tubulinUnique reorganizationBasal axisGamma-tubulinCell-basement membrane interactionsFunctional polarityMicrotubule growthMembrane interactionsOrganizing centerPrimary cell culturesCultured cellsEpithelial cellsRetinal pigment epitheliumCell cultures