2016
Implantable tissue-engineered blood vessels from human induced pluripotent stem cells
Gui L, Dash BC, Luo J, Qin L, Zhao L, Yamamoto K, Hashimoto T, Wu H, Dardik A, Tellides G, Niklason LE, Qyang Y. Implantable tissue-engineered blood vessels from human induced pluripotent stem cells. Biomaterials 2016, 102: 120-129. PMID: 27336184, PMCID: PMC4939127, DOI: 10.1016/j.biomaterials.2016.06.010.Peer-Reviewed Original ResearchConceptsVascular smooth muscle cellsVascular diseaseBlood vesselsAlpha-smooth muscle actinSmooth muscle myosin heavy chainActive vascular remodelingSmooth muscle cellsMuscle myosin heavy chainTissue-engineered blood vesselsStem cellsAbundant collagenous matrixPluripotent stem cellsInterposition graftAllogeneic graftsVascular remodelingΑ-SMANude ratsMuscle actinMyosin heavy chainClinical useMuscle cellsFunctional vascular smooth muscle cellsPatientsFunctional tissue-engineered blood vesselGraftBioengineered human acellular vessels for dialysis access in patients with end-stage renal disease: two phase 2 single-arm trials
Lawson JH, Glickman MH, Ilzecki M, Jakimowicz T, Jaroszynski A, Peden EK, Pilgrim AJ, Prichard HL, Guziewicz M, Przywara S, Szmidt J, Turek J, Witkiewicz W, Zapotoczny N, Zubilewicz T, Niklason LE. Bioengineered human acellular vessels for dialysis access in patients with end-stage renal disease: two phase 2 single-arm trials. The Lancet 2016, 387: 2026-2034. PMID: 27203778, PMCID: PMC4915925, DOI: 10.1016/s0140-6736(16)00557-2.Peer-Reviewed Original ResearchConceptsHuman acellular vesselEnd-stage renal diseaseAcellular vesselsPrimary patencySecondary patencyRenal diseaseDialysis accessHaemodialysis accessPhase 2 single-arm trialSingle-arm phase 2 trialPolytetrafluoroethylene arteriovenous graftsPhase 2 trialDialysis access graftsSingle-arm trialArms of patientsPrimary endpointChronic haemodialysisAccess graftsUS National InstitutesArteriovenous graftsVenous anastomosisCensoring eventIntimal hyperplasiaPatencyPatients
2011
Decellularized tissue-engineered blood vessel as an arterial conduit
Quint C, Kondo Y, Manson RJ, Lawson JH, Dardik A, Niklason LE. Decellularized tissue-engineered blood vessel as an arterial conduit. Proceedings Of The National Academy Of Sciences Of The United States Of America 2011, 108: 9214-9219. PMID: 21571635, PMCID: PMC3107282, DOI: 10.1073/pnas.1019506108.Peer-Reviewed Original ResearchConceptsTissue-engineered vesselsBiomimetic perfusion systemArterial tissue engineeringTissue-engineered blood vesselsTissue engineering techniquesEndothelial progenitor cellsTissue engineeringRobust extracellular matrixVein graftsBiological vascular graftPorcine carotid arteriesVascular graftsTissue regenerationIntimal hyperplasiaAutologous endothelial progenitor cellsGraft wallProgenitor cellsControl vein graftsSmooth muscle cellsGraft lumenGraft occlusionArterial conduitsImproved patencyCarotid arteryPorcine smooth muscle cellsReadily Available Tissue-Engineered Vascular Grafts
Dahl SL, Kypson AP, Lawson JH, Blum JL, Strader JT, Li Y, Manson RJ, Tente WE, DiBernardo L, Hensley MT, Carter R, Williams TP, Prichard HL, Dey MS, Begelman KG, Niklason LE. Readily Available Tissue-Engineered Vascular Grafts. Science Translational Medicine 2011, 3: 68ra9. PMID: 21289273, DOI: 10.1126/scitranslmed.3001426.Peer-Reviewed Original ResearchConceptsTissue-engineered vascular graftsVascular graftsMechanical propertiesSynthetic graftsAutologous tissueCoronary artery bypassCanine smooth muscle cellsPolyglycolic acid scaffoldsTissue engineeringHuman vascular graftsSmooth muscle cellsSynthetic vascular graftsArtery bypassSuch patientsArteriovenous accessArterial bypassHuman blood vesselsCardiovascular diseaseExcellent patencyBaboon modelIntimal hyperplasiaDog modelCellular materialPatientsGraft