2009
Chapter 21 Assessment of In Vivo Mitochondrial Metabolism by Magnetic Resonance Spectroscopy
Befroy DE, Petersen K, Rothman DL, Shulman GI. Chapter 21 Assessment of In Vivo Mitochondrial Metabolism by Magnetic Resonance Spectroscopy. Methods In Enzymology 2009, 457: 373-393. PMID: 19426879, PMCID: PMC3077057, DOI: 10.1016/s0076-6879(09)05021-6.Peer-Reviewed Original Research
2001
Effect of triiodothyronine on mitochondrial energy coupling in human skeletal muscle
Lebon V, Dufour S, Petersen K, Ren J, Jucker B, Slezak L, Cline G, Rothman D, Shulman G. Effect of triiodothyronine on mitochondrial energy coupling in human skeletal muscle. Journal Of Clinical Investigation 2001, 108: 733-737. PMID: 11544279, PMCID: PMC209375, DOI: 10.1172/jci11775.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphateAdultCitric Acid CycleFemaleGlutamic AcidHumansMagnetic Resonance SpectroscopyMaleMitochondriaMuscle, SkeletalOxidative PhosphorylationTriiodothyronineConceptsSkeletal muscleContribution of net hepatic glycogen synthesis to disposal of an oral glucose load in humans
Petersen K, Cline G, Gerard D, Magnusson I, Rothman D, Shulman G. Contribution of net hepatic glycogen synthesis to disposal of an oral glucose load in humans. Metabolism 2001, 50: 598-601. PMID: 11319724, DOI: 10.1053/meta.2001.22561.Peer-Reviewed Original ResearchMeSH KeywordsAdultBlood GlucoseCarbon IsotopesFastingFemaleGlucoseGlycogenHumansInsulinKineticsLiverMagnetic Resonance ImagingMagnetic Resonance SpectroscopyMaleUridine Diphosphate GlucoseConceptsHepatic glycogen synthesisOral glucose loadGlucose loadMagnetic resonance imagingLiver glycogen synthesisNet hepatic glycogen synthesisLiver volumeGlycogen synthesisWhole-body glucose disposalGlycogen contentHepatic glycogen concentrationIngestion of glucoseLiver glycogen contentHepatic glycogen contentIdentical glucose loadHepatic UDP-glucoseGlucose disposalGroup 2Group 1Direct pathwayResonance imagingGlycogen concentrationMean maximum rateLiverIngestion
2000
Effects of Caffeine on Muscle Glycogen Utilization and the Neuroendocrine Axis during Exercise1
Laurent D, Schneider K, Prusaczyk W, Franklin C, Vogel S, Krssak M, Petersen K, Goforth H, Shulman G. Effects of Caffeine on Muscle Glycogen Utilization and the Neuroendocrine Axis during Exercise1. The Journal Of Clinical Endocrinology & Metabolism 2000, 85: 2170-2175. PMID: 10852448, DOI: 10.1210/jcem.85.6.6655.Peer-Reviewed Original ResearchConceptsMuscle glycogen contentMuscle glycogen utilizationGlycogen contentCaffeine ingestionNeuroendocrine axisGlycogen utilizationGlycogen-sparing effectFree fatty acid concentrationsBeta-endorphin levelsCaffeine-treated groupExercise-induced glycogen depletionMaximal oxygen consumptionEffects of caffeineHigher muscle glycogen contentPlacebo groupExercise enduranceFatty acid concentrationsPlasma concentrationsNeuroendocrine hormonesCortisol releaseProlonged exerciseGlycogen depletionPlasma lactateNormal valuesThigh musclesMechanism of muscle glycogen autoregulation in humans
Laurent D, Hundal R, Dresner A, Price T, Vogel S, Petersen K, Shulman G. Mechanism of muscle glycogen autoregulation in humans. AJP Endocrinology And Metabolism 2000, 278: e663-e668. PMID: 10751200, DOI: 10.1152/ajpendo.2000.278.4.e663.Peer-Reviewed Original ResearchConceptsInsulin-stimulated ratesWhole body glucose oxidation ratesMuscle glycogenGlycogen loadingPlasma free fatty acid concentrationsWhole-body glucose uptakeFree fatty acid concentrationsMuscle glycogen contentGlucose oxidation ratesMuscle glycogen synthesisPlasma lactate concentrationTwofold increaseHyperinsulinemic clampGlycogen synthase activityFatty acid concentrationsLoading protocolGlucose infusionHealthy volunteersLactate concentrationGlycogen contentGlucose uptakeAnaerobic glycolysisGlycogen synthesisUnlabeled glucose infusionGlycogenGlycogen loading alters muscle glycogen resynthesis after exercise
Price T, Laurent D, Petersen K, Rothman D, Shulman G. Glycogen loading alters muscle glycogen resynthesis after exercise. Journal Of Applied Physiology 2000, 88: 698-704. PMID: 10658040, DOI: 10.1152/jappl.2000.88.2.698.Peer-Reviewed Original ResearchMeSH KeywordsAdultDietary CarbohydratesDose-Response Relationship, DrugExerciseFemaleGlucose-6-PhosphateGlycogenHumansMagnetic Resonance SpectroscopyMaleMuscle, SkeletalPhysical ExertionTime FactorsConceptsMaximum voluntary contractionGlycogen recoveryNOR trialMuscle glycogen resynthesisMuscle glycogen recoveryNormal resting levelsGlycogen resynthesisVoluntary contractionHeavy exercisePlantar flexionResting levelGlycogen concentrationGlycogen levelsSeparate occasionsSimilar glucoseUntrained subjectsTrialsGlycogen synthesisExerciseExtended recoverySubjectsRecoveryLevelsMinFlexion
1999
Impaired Glucose Transport as a Cause of Decreased Insulin-Stimulated Muscle Glycogen Synthesis in Type 2 Diabetes
Cline G, Petersen K, Krssak M, Shen J, Hundal R, Trajanoski Z, Inzucchi S, Dresner A, Rothman D, Shulman G. Impaired Glucose Transport as a Cause of Decreased Insulin-Stimulated Muscle Glycogen Synthesis in Type 2 Diabetes. New England Journal Of Medicine 1999, 341: 240-246. PMID: 10413736, DOI: 10.1056/nejm199907223410404.Peer-Reviewed Original ResearchConceptsMuscle glycogen synthesisType 2 diabetes mellitusConcentrations of insulinNormal subjectsDiabetes mellitusGlucose metabolismGlycogen synthesisGlucose concentrationWhole-body glucose metabolismInsulin-stimulated muscle glycogen synthesisIntracellular glucose concentrationType 2 diabetesPlasma insulin concentrationGlucose transportImpaired glucose transportInterstitial fluid glucose concentrationsOpen-flow microperfusionIntramuscular glucoseInterstitial fluidGlucose-6-phosphate concentrationInsulin resistanceVivo microdialysisInsulin concentrationsHyperinsulinemic conditionsPatientsDetermination of the rate of the glutamate/glutamine cycle in the human brain by in vivo 13C NMR
Shen J, Petersen K, Behar K, Brown P, Nixon T, Mason G, Petroff O, Shulman G, Shulman R, Rothman D. Determination of the rate of the glutamate/glutamine cycle in the human brain by in vivo 13C NMR. Proceedings Of The National Academy Of Sciences Of The United States Of America 1999, 96: 8235-8240. PMID: 10393978, PMCID: PMC22218, DOI: 10.1073/pnas.96.14.8235.Peer-Reviewed Original ResearchConceptsGlutamate/glutamine cycleGlutamine cycleCerebral cortexMin/Rat cerebral cortexVivo 13C NMR spectraGlucose oxidation ratesHuman brainGlucose oxidationGlutamatergic activityRat modelTricarboxylic acid cycle rateParietal lobeHuman cortexCortexTime courseBrainGlutamine synthesisMajor metabolic fluxCycle rateTricarboxylic acid cycleHigh levelsInfusionRatsAcid cycleContributions of net hepatic glycogenolysis and gluconeogenesis to glucose production in cirrhosis
Petersen K, Krssak M, Navarro V, Chandramouli V, Hundal R, Schumann W, Landau B, Shulman G. Contributions of net hepatic glycogenolysis and gluconeogenesis to glucose production in cirrhosis. American Journal Of Physiology 1999, 276: e529-e535. PMID: 10070020, DOI: 10.1152/ajpendo.1999.276.3.e529.Peer-Reviewed Original ResearchMeSH KeywordsAdultDeuterium OxideFastingFemaleGluconeogenesisGlucoseGlycogenHumansLiverLiver CirrhosisMagnetic Resonance ImagingMagnetic Resonance SpectroscopyMaleReference ValuesConceptsNet hepatic glycogenolysisCirrhotic subjectsHepatic glycogenolysisControl subjectsGlucose productionFree insulin-like growth factor IInsulin-like growth factor IHepatic glycogen concentrationGrowth factor IHepatic glycogen contentMagnetic resonance imagingRate of gluconeogenesisBlood glucosePlasma levelsHealthy subjectsEffects of free fatty acids on glucose transport and IRS-1–associated phosphatidylinositol 3-kinase activity
Dresner A, Laurent D, Marcucci M, Griffin M, Dufour S, Cline G, Slezak L, Andersen D, Hundal R, Rothman D, Petersen K, Shulman G. Effects of free fatty acids on glucose transport and IRS-1–associated phosphatidylinositol 3-kinase activity. Journal Of Clinical Investigation 1999, 103: 253-259. PMID: 9916137, PMCID: PMC407880, DOI: 10.1172/jci5001.Peer-Reviewed Original ResearchMeSH KeywordsAdolescentAdultFatty Acids, NonesterifiedFemaleGlucoseGlucose Clamp TechniqueGlucose-6-PhosphateGlycerolGlycogenHumansHyperinsulinismInsulinInsulin Receptor Substrate ProteinsInsulin ResistanceLipid MetabolismMagnetic Resonance SpectroscopyMaleMuscle, SkeletalPhosphatidylinositol 3-KinasesPhosphoproteinsConceptsFree fatty acidsIRS-1-associated phosphatidylinositolLipid infusionInsulin resistanceGlycerol infusionPlasma free fatty acidsWhole-body glucose uptakeFive-hour infusionLipid/heparinHyperinsulinemic-euglycemic clampGlucose concentrationGlucose transportMuscle glycogen synthesisDiminished glucose transportMuscle biopsy samplesHuman skeletal muscleRate of insulinGlucose-6-phosphate concentrationFatty acidsHealthy subjectsBiopsy samplesInfusion studiesIdentical protocolInfusionIRS-1-associated PI
1998
Effect of epinephrine on muscle glycogenolysis and insulin-stimulated muscle glycogen synthesis in humans
Laurent D, Petersen K, Russell R, Cline G, Shulman G. Effect of epinephrine on muscle glycogenolysis and insulin-stimulated muscle glycogen synthesis in humans. American Journal Of Physiology 1998, 274: e130-e138. PMID: 9458758, DOI: 10.1152/ajpendo.1998.274.1.e130.Peer-Reviewed Original ResearchConceptsInsulin-stimulated muscle glycogen synthesisMuscle glycogen synthesisMuscle glycogenolysisEpinephrine infusionPhysiological increaseWhole-body glucose oxidationMuscle glycogen synthesis ratesPlasma epinephrine concentrationEuglycemic hyperinsulinemic clampGlucose infusion rateEffect of epinephrineGlycogen synthesisInsulin-stimulated glycogenesisBasal insulinControl subjectsPlasma glucoseEpinephrine concentrationsFree fatty acidsBasal valuesInfusion rateGlycogen synthesis rateMuscle glycogenEpinephrineGlycogenolysisMajor impairment
1995
Triiodothyronine treatment increases substrate cycling between pyruvate carboxylase and malic enzyme in perfused rat liver
Petersen K, Blair J, Shulman G. Triiodothyronine treatment increases substrate cycling between pyruvate carboxylase and malic enzyme in perfused rat liver. Metabolism 1995, 44: 1380-1383. PMID: 7476321, DOI: 10.1016/0026-0495(95)90133-7.Peer-Reviewed Original ResearchMeSH KeywordsAlanineAnimalsCarbonCarbon IsotopesGlucoseLiverMagnetic Resonance SpectroscopyMalate DehydrogenaseMaleOxaloacetatesPyruvate CarboxylasePyruvatesRatsRats, Sprague-DawleyTartronatesTriiodothyronineTritiumConceptsMalic enzymeRelative carbon fluxPyruvate kinaseCarbon fluxesAlanine C2Pyruvate carboxylase fluxSubstrate cyclingKinase activityMalic enzyme activityPyruvate kinase activityPyruvate carboxylaseKinaseEnzymeEnzyme activityCarboxylaseNormal rat liverRat liverNuclear magnetic resonance spectroscopyRelative rolesT3 treatmentOxaloacetateCyclingRecirculating systemPyruvate
1993
Gluconeogenesis in hepatocytes determined with [2-13C] acetate and quantitative 13C NMR spectroscopy
Petersen K, Grunnet N. Gluconeogenesis in hepatocytes determined with [2-13C] acetate and quantitative 13C NMR spectroscopy. The International Journal Of Biochemistry & Cell Biology 1993, 25: 1-5. PMID: 8432377, DOI: 10.1016/0020-711x(93)90482-t.Peer-Reviewed Original ResearchAcetatesAcetic AcidAlgorithmsAnimalsCarbon IsotopesCells, CulturedCitric Acid CycleFemaleGluconeogenesisGlucoseLiverMagnetic Resonance SpectroscopyRats