2024
Glis3 Is a Modifier of Cyst Progression in Autosomal Dominant Polycystic Kidney Disease (ADPKD)
Wei Z, Tian X, Rehman M, Dong K, Cai Y, Cordido A, Somlo S. Glis3 Is a Modifier of Cyst Progression in Autosomal Dominant Polycystic Kidney Disease (ADPKD). Journal Of The American Society Of Nephrology 2024, 35: 10.1681/asn.2024x2zerq4t. DOI: 10.1681/asn.2024x2zerq4t.Peer-Reviewed Original ResearchFunctional Studies of Polycystin-1 Using a Novel Pkd1-HaloTag Mouse
Cordido A, Dong K, Cai Y, Tian X, Wei Z, Rehman M, Somlo S. Functional Studies of Polycystin-1 Using a Novel Pkd1-HaloTag Mouse. Journal Of The American Society Of Nephrology 2024, 35: 10.1681/asn.2024kjqymtyt. DOI: 10.1681/asn.2024kjqymtyt.Peer-Reviewed Original ResearchChemical Modulation of the Ire1α-Xbp1 Pathway Reduces Cyst Size in ADPKD Mouse and Human Three-Dimensional Spheroids
Hasan F, Bhardwaj R, Rehman M, Cai Y, Dong K, Cordido A, Pioppini C, Yilmaz D, Tian X, Somlo S, Krappitz M, Fedeles S. Chemical Modulation of the Ire1α-Xbp1 Pathway Reduces Cyst Size in ADPKD Mouse and Human Three-Dimensional Spheroids. Journal Of The American Society Of Nephrology 2024, 35: 10.1681/asn.2024x8qpvhm3. DOI: 10.1681/asn.2024x8qpvhm3.Peer-Reviewed Original ResearchGlis2 is an early effector of polycystin signaling and a target for therapy in polycystic kidney disease
Zhang C, Rehman M, Tian X, Pei S, Gu J, Bell T, Dong K, Tham M, Cai Y, Wei Z, Behrens F, Jetten A, Zhao H, Lek M, Somlo S. Glis2 is an early effector of polycystin signaling and a target for therapy in polycystic kidney disease. Nature Communications 2024, 15: 3698. PMID: 38693102, PMCID: PMC11063051, DOI: 10.1038/s41467-024-48025-6.Peer-Reviewed Original ResearchConceptsMouse models of autosomal dominant polycystic kidney diseaseModel of autosomal dominant polycystic kidney diseasePolycystin signalingAutosomal dominant polycystic kidney diseasePolycystin-1Polycystic kidney diseaseTreat autosomal dominant polycystic kidney diseaseGlis2Primary ciliaKidney tubule cellsSignaling pathwayMouse modelDominant polycystic kidney diseasePotential therapeutic targetTranslatomeAntisense oligonucleotidesKidney diseasePolycystinMouse kidneyFunctional effectorsCyst formationTherapeutic targetInactivationFunctional targetPharmacological targetsA synthetic agent ameliorates polycystic kidney disease by promoting apoptosis of cystic cells through increased oxidative stress
Fedeles B, Bhardwaj R, Ishikawa Y, Khumsubdee S, Krappitz M, Gubina N, Volpe I, Andrade D, Westergerling P, Staudner T, Campolo J, Liu S, Dong K, Cai Y, Rehman M, Gallagher A, Ruchirawat S, Croy R, Essigmann J, Fedeles S, Somlo S. A synthetic agent ameliorates polycystic kidney disease by promoting apoptosis of cystic cells through increased oxidative stress. Proceedings Of The National Academy Of Sciences Of The United States Of America 2024, 121: e2317344121. PMID: 38241440, PMCID: PMC10823221, DOI: 10.1073/pnas.2317344121.Peer-Reviewed Original ResearchConceptsCyst cellsAutosomal dominant polycystic kidney diseaseMouse models of autosomal dominant polycystic kidney diseasePolycystic kidney diseaseModel of autosomal dominant polycystic kidney diseaseKidney diseaseDeveloped primersMitochondrial oxidative stressPathophysiology of autosomal dominant polycystic kidney diseaseOxidative stressInduce apoptosisMitochondrial respirationCystic cellsUp-regulating aerobic glycolysisHomozygous inactivationMonogenic causeDominant polycystic kidney diseaseAerobic glycolysisRenal replacement therapyApoptosisEnd-stage kidney diseaseAnti-tumor agentsAdult mouse modelChronic kidney diseaseAlkylate DNA
2023
Dephosphorylation Facilitates Trafficking of Mutant Polycystin-2 to Cilia
Cai Y, Dong K, Spitzer M, Geiges L, Tian X, Krappitz M, Diggs L, Wei Z, Cordido A, Pei S, Fedeles S, Somlo S. Dephosphorylation Facilitates Trafficking of Mutant Polycystin-2 to Cilia. Journal Of The American Society Of Nephrology 2023, 34: 560-560. DOI: 10.1681/asn.20233411s1560b.Peer-Reviewed Original ResearchThe C-terminal tail of polycystin-1 suppresses cystic disease in a mitochondrial enzyme-dependent fashion
Onuchic L, Padovano V, Schena G, Rajendran V, Dong K, Shi X, Pandya R, Rai V, Gresko N, Ahmed O, Lam T, Wang W, Shen H, Somlo S, Caplan M. The C-terminal tail of polycystin-1 suppresses cystic disease in a mitochondrial enzyme-dependent fashion. Nature Communications 2023, 14: 1790. PMID: 36997516, PMCID: PMC10063565, DOI: 10.1038/s41467-023-37449-1.Peer-Reviewed Original ResearchConceptsPolycystin-1Nicotinamide nucleotide transhydrogenaseTerminal tailCystic phenotypeAutosomal dominant polycystic kidney diseaseCyst cell proliferationC-terminal domainAmino acid residuesLethal monogenic disorderC-terminal cleavageNucleotide transhydrogenaseAcid residuesMitochondrial functionTransgenic expressionPKD1 geneRedox stateShort fragmentsCell proliferationMonogenic disordersDominant polycystic kidney diseasePolycystic kidney diseaseGene therapy strategiesProteinPhenotypeFragments
2022
Pkd2 Re-Expression Can Reverse Liver Cysts and Improve GFR in Mouse Models of Autosomal Dominant Polycystic Kidney Disease
Dong K, Tham M, Cordido A, Cai Y, Pei S, Bhardwaj R, Wei Z, Rehman M, Roy K, Tian X, Somlo S. Pkd2 Re-Expression Can Reverse Liver Cysts and Improve GFR in Mouse Models of Autosomal Dominant Polycystic Kidney Disease. Journal Of The American Society Of Nephrology 2022, 33: 418-418. DOI: 10.1681/asn.20223311s1418c.Peer-Reviewed Original Research
2021
FC 008INTERDEPENDENT REGULATION OF POLYCYSTIN EXPRESSION INFLUENCES STARVATION-INDUCED AUTOPHAGY AND CELL DEATH
Decuypere J, Van Giel D, Janssens P, Dong K, Somlo S, Cai Y, Mekahli D, Vennekens R. FC 008INTERDEPENDENT REGULATION OF POLYCYSTIN EXPRESSION INFLUENCES STARVATION-INDUCED AUTOPHAGY AND CELL DEATH. Nephrology Dialysis Transplantation 2021, 36: gfab125.001. DOI: 10.1093/ndt/gfab125.001.Peer-Reviewed Original ResearchAutosomal dominant polycystic kidney diseaseEarly-stage ADPKD patientsProximal tubular epithelial cellsProteins polycystin-1Renal stressADPKD patientsEarly-stage autosomal dominant polycystic kidney diseasePC1 levelsCell deathCyst formationTruncating PKD1 mutationsSevere disease progressionAutophagy upregulationDominant polycystic kidney diseaseTubular epithelial cellsRenal cell survivalPolycystic kidney diseasePolycystin-2Cell survivalCell death resistanceKidney diseaseDisease progressionGFP-LC3 punctaeSiRNA-mediated knockdownChronic starvation
2020
A shrinkage approach to joint estimation of multiple covariance matrices
Hu Z, Hu Z, Dong K, Tong T, Wang Y. A shrinkage approach to joint estimation of multiple covariance matrices. Metrika 2020, 84: 339-374. DOI: 10.1007/s00184-020-00781-3.Peer-Reviewed Original ResearchSample covariance matrixCovariance matrixMultiple covariance matricesPooled sample covariance matrixOptimal shrinkage parameterQuadratic loss functionShrinkage parameterJoint estimationNumber of groupsShrinkage approachShrinkage methodSimulation studyLoss functionMatrixInfinityEstimatorSample sizeEstimationFrameworkSAT-443 INTERDEPENDENT REGULATION OF POLYCYSTINS INFLUENCES AUTOPHAGY, CELL DEATH AND PROLIFERATION
Decuypere J, Janssens P, Dong K, Cai Y, Mekahli D, Vennekens R. SAT-443 INTERDEPENDENT REGULATION OF POLYCYSTINS INFLUENCES AUTOPHAGY, CELL DEATH AND PROLIFERATION. Kidney International Reports 2020, 5: s185. DOI: 10.1016/j.ekir.2020.02.470.Peer-Reviewed Original Research
2017
A Comparison of Methods for Estimating the Determinant of High-Dimensional Covariance Matrix
Hu Z, Dong K, Dai W, Tong T. A Comparison of Methods for Estimating the Determinant of High-Dimensional Covariance Matrix. The International Journal Of Biostatistics 2017, 13: 20170013. PMID: 28953454, DOI: 10.1515/ijb-2017-0013.Peer-Reviewed Original ResearchConceptsHigh-dimensional covariance matricesCovariance matrixCovariance matrix estimationMatrix estimation methodExtensive simulation studyHigh-dimensional dataStatistical inferenceCovariance matrix estimation methodMatrix estimationComputational challengesInformation theoryEstimation methodSimulation studyHigh dimensionalityLoss functionStatistical testsComparison resultsReal applicationsInteresting comparison resultsComparison of methodsMatrixRecent proposalSample sizeDimensionalityTheoryIsolated polycystic liver disease genes define effectors of polycystin-1 function
Besse W, Dong K, Choi J, Punia S, Fedeles SV, Choi M, Gallagher AR, Huang EB, Gulati A, Knight J, Mane S, Tahvanainen E, Tahvanainen P, Sanna-Cherchi S, Lifton RP, Watnick T, Pei YP, Torres VE, Somlo S. Isolated polycystic liver disease genes define effectors of polycystin-1 function. Journal Of Clinical Investigation 2017, 127: 3558-3558. PMID: 28862642, PMCID: PMC5669574, DOI: 10.1172/jci96729.Peer-Reviewed Original ResearchPolycystin-1 functionPolycystin-1Protein biogenesis pathwaysGenome-wide basisPolycystic liver diseaseLoss-of-function mutationsWhole-exome sequencingHeterozygous loss-of-function mutationsBiogenesis pathwayLoss of functionAdditional genesDisease genesGene productsCell line modelsCandidate genesExome sequencingEndoplasmic reticulumCausative genesFunction mutationsGenesAutosomal dominant polycystic kidney diseaseDominant polycystic kidney diseaseSec63Defective maturationKidney cysts
2016
NBLDA: negative binomial linear discriminant analysis for RNA-Seq data
Dong K, Zhao H, Tong T, Wan X. NBLDA: negative binomial linear discriminant analysis for RNA-Seq data. BMC Bioinformatics 2016, 17: 369. PMID: 27623864, PMCID: PMC5022247, DOI: 10.1186/s12859-016-1208-1.Peer-Reviewed Original ResearchConceptsNegative binomial linear discriminant analysisNegative binomial distributionNegative binomial variablesPresence of overdispersionBinomial distributionSimulation resultsUnknown parametersNegative binomial modelBinomial modelReal RNA-seq data setsRNA-seq data classificationStatistical methodsDispersion parametersCount dataR codePoisson assumptionLinear discriminant analysisReal-world applicationsPoisson distributionImpact of dispersionDiscrete natureBinomial variablesComparison resultsBinomial classifierWittenShrinkage-based diagonal Hotelling’s tests for high-dimensional small sample size data
Dong K, Pang H, Tong T, Genton M. Shrinkage-based diagonal Hotelling’s tests for high-dimensional small sample size data. Journal Of Multivariate Analysis 2016, 143: 127-142. DOI: 10.1016/j.jmva.2015.08.022.Peer-Reviewed Original Research
2014
Simultaneous confidence bands and hypothesis testing for single-index models
Li G, Peng H, Tong T, Dong K. Simultaneous confidence bands and hypothesis testing for single-index models. Statistica Sinica 2014 DOI: 10.5705/ss.2012.127.Peer-Reviewed Original Research
2005
Rolle von KATP-Kanälen bei der Ischämie intestinaler Organe
Buschmann A, Vanoye C, MacGregor G, Dong K, Tang L, Hall A, Lu M, Giebisch G, Hebert S. Rolle von KATP-Kanälen bei der Ischämie intestinaler Organe. Deutsche Gesellschaft Für Chirurgie 2005, 34: 307-310. DOI: 10.1007/3-540-26560-0_108.Peer-Reviewed Original Research
2001
An Amino Acid Triplet in the NH2 Terminus of Rat ROMK1 Determines Interaction with SUR2B*
Dong K, Xu J, Vanoye C, Welch R, MacGregor G, Giebisch G, Hebert S. An Amino Acid Triplet in the NH2 Terminus of Rat ROMK1 Determines Interaction with SUR2B*. Journal Of Biological Chemistry 2001, 276: 44347-44353. PMID: 11567030, DOI: 10.1074/jbc.m108072200.Peer-Reviewed Original ResearchROMK is the apical membrane K+ recycling pathway in the gastric giand
Sritharan K, Wagner C, Dong K, Radebold K, Hebert S, Geibel J. ROMK is the apical membrane K+ recycling pathway in the gastric giand. Gastroenterology 2001, 120: a102. DOI: 10.1016/s0016-5085(08)80500-8.Peer-Reviewed Original ResearchROMK is the apical membrane K+ recycling pathway in the gastric giand
SRITHARAN K, WAGNER C, DONG K, RADEBOLD K, HEBERT S, GEIBEL J. ROMK is the apical membrane K+ recycling pathway in the gastric giand. Gastroenterology 2001, 120: a102-a102. DOI: 10.1016/s0016-5085(01)80500-x.Peer-Reviewed Original Research