2016
Mutational landscape of uterine and ovarian carcinosarcomas implicates histone genes in epithelial–mesenchymal transition
Zhao S, Bellone S, Lopez S, Thakral D, Schwab C, English DP, Black J, Cocco E, Choi J, Zammataro L, Predolini F, Bonazzoli E, Bi M, Buza N, Hui P, Wong S, Abu-Khalaf M, Ravaggi A, Bignotti E, Bandiera E, Romani C, Todeschini P, Tassi R, Zanotti L, Odicino F, Pecorelli S, Donzelli C, Ardighieri L, Facchetti F, Falchetti M, Silasi DA, Ratner E, Azodi M, Schwartz PE, Mane S, Angioli R, Terranova C, Quick CM, Edraki B, Bilgüvar K, Lee M, Choi M, Stiegler AL, Boggon TJ, Schlessinger J, Lifton RP, Santin AD. Mutational landscape of uterine and ovarian carcinosarcomas implicates histone genes in epithelial–mesenchymal transition. Proceedings Of The National Academy Of Sciences Of The United States Of America 2016, 113: 12238-12243. PMID: 27791010, PMCID: PMC5087050, DOI: 10.1073/pnas.1614120113.Peer-Reviewed Original ResearchMeSH KeywordsAgedAged, 80 and overCarcinosarcomaClass I Phosphatidylinositol 3-KinasesDNA-Binding ProteinsEpithelial-Mesenchymal TransitionFemaleGene Expression Regulation, NeoplasticHistonesHumansMiddle AgedMutationOvarian NeoplasmsPTEN PhosphohydrolaseTelomeraseTumor Suppressor Protein p53Uterine NeoplasmsConceptsEpithelial-mesenchymal transitionWhole-exome sequencingHistone gene clusterMutational landscapeStable transgenic expressionExcess of mutationsMultiregion whole-exome sequencingHistone genesEvolutionary historyPhylogenetic relationshipsGene clusterHistone H2AChromosome segmentsSeparate lineagesCancer genesGenetic landscapeUterine serous carcinoma cell linesTransgenic expressionGenesCarcinoma cell linesGene TP53Frequent amplificationFrequent deletionsChromosome 6pInvasive propertiesGenomic characterization of sarcomatoid transformation in clear cell renal cell carcinoma
Bi M, Zhao S, Said JW, Merino MJ, Adeniran AJ, Xie Z, Nawaf CB, Choi J, Belldegrun AS, Pantuck AJ, Kluger HM, Bilgüvar K, Lifton RP, Shuch B. Genomic characterization of sarcomatoid transformation in clear cell renal cell carcinoma. Proceedings Of The National Academy Of Sciences Of The United States Of America 2016, 113: 2170-2175. PMID: 26864202, PMCID: PMC4776463, DOI: 10.1073/pnas.1525735113.Peer-Reviewed Original ResearchMeSH KeywordsAgedCarcinoma, Renal CellCell DedifferentiationDNA Mismatch RepairDNA-Binding ProteinsExomeFemaleGenes, p53HumansKidney NeoplasmsLoss of HeterozygosityMaleMiddle AgedMutationNuclear ProteinsOncogenesPolymorphism, Single NucleotidePrognosisTranscription FactorsTumor Suppressor ProteinsUbiquitin ThiolesteraseConceptsClear cell renal cell carcinomaCell renal cell carcinomaRenal cell carcinomaSarcomatoid elementsCarcinomatous elementsCell carcinomaSomatic single nucleotide variantsVon Hippel-Lindau tumor suppressorPoor-prognosis cancerTreatment of patientsTumor protein p53 (TP53) mutationsMismatch repair deficiencyRich interaction domain 1ASarcomatoid featuresPoor prognosisUnknown pathogenesisPolybromo-1TP53 mutationsP53 mutationsSarcomatoid transformationPan-cancer genesExome sequencingTumorsRepair deficiencyProtein 1
2015
Absence of KMT2D/MLL2 mutations in abdominal paraganglioma
Stenman A, Juhlin CC, Haglund F, Brown TC, Clark VE, Svahn F, Bilguvar K, Goh G, Korah R, Lifton RP, Carling T. Absence of KMT2D/MLL2 mutations in abdominal paraganglioma. Clinical Endocrinology 2015, 84: 632-634. PMID: 26303934, DOI: 10.1111/cen.12884.Peer-Reviewed Original ResearchWhole‐exome sequencing defines the mutational landscape of pheochromocytoma and identifies KMT2D as a recurrently mutated gene
Juhlin CC, Stenman A, Haglund F, Clark VE, Brown TC, Baranoski J, Bilguvar K, Goh G, Welander J, Svahn F, Rubinstein JC, Caramuta S, Yasuno K, Günel M, Bäckdahl M, Gimm O, Söderkvist P, Prasad ML, Korah R, Lifton RP, Carling T. Whole‐exome sequencing defines the mutational landscape of pheochromocytoma and identifies KMT2D as a recurrently mutated gene. Genes Chromosomes And Cancer 2015, 54: 542-554. PMID: 26032282, PMCID: PMC4755142, DOI: 10.1002/gcc.22267.Peer-Reviewed Original ResearchThe distinct genetic pattern of ALS in Turkey and novel mutations
Özoğuz A, Uyan Ö, Birdal G, Iskender C, Kartal E, Lahut S, Ömür Ö, Agim ZS, Eken A, Sen NE, Kavak P, Saygı C, Sapp PC, Keagle P, Parman Y, Tan E, Koç F, Deymeer F, Oflazer P, Hanağası H, Gürvit H, Bilgiç B, Durmuş H, Ertaş M, Kotan D, Akalın M, Güllüoğlu H, Zarifoğlu M, Aysal F, Döşoğlu N, Bilguvar K, Günel M, Keskin Ö, Akgün T, Özçelik H, Landers JE, Brown RH, Başak A. The distinct genetic pattern of ALS in Turkey and novel mutations. Neurobiology Of Aging 2015, 36: 1764.e9-1764.e18. PMID: 25681989, PMCID: PMC6591733, DOI: 10.1016/j.neurobiolaging.2014.12.032.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Signal TransducingAdolescentAdultAgedAmyotrophic Lateral SclerosisAutophagy-Related ProteinsC9orf72 ProteinCell Cycle ProteinsCytoskeletal ProteinsDNA-Binding ProteinsExomeFemaleGenetic Association StudiesGuanine Nucleotide Exchange FactorsHumansIntracellular Signaling Peptides and ProteinsMaleMembrane Transport ProteinsMiddle AgedMutationNerve Tissue ProteinsNuclear ProteinsOncogene ProteinsProtein Deglycase DJ-1Protein Serine-Threonine KinasesProteinsRNA-Binding Protein FUSSequestosome-1 ProteinSuperoxide DismutaseSuperoxide Dismutase-1Transcription Factor TFIIIATRPM Cation ChannelsTurkeyUbiquitinsYoung AdultConceptsALS patientsFamilial ALS patientsSporadic ALS casesSALS patientsALS populationALS casesFamilial ALSSOD1 mutationsSQSTM1 genePatientsDistinct genetic patternsAmyotrophic lateral sclerosis mutationsExome sequencingDistinct genetic backgroundsGene mutationsSpectrum of mutationsNovel mutationsC9orf72Genetic backgroundALSMutationsPopulationSPG11TARDBP
2014
Spondyloepimetaphyseal dysplasia with joint laxity, leptodactylic type: longitudinal observation of radiographic findings in a child heterozygous for a KIF22 mutation
Tüysüz B, Yılmaz S, Erener-Ercan T, Bilguvar K, Günel M. Spondyloepimetaphyseal dysplasia with joint laxity, leptodactylic type: longitudinal observation of radiographic findings in a child heterozygous for a KIF22 mutation. Pediatric Radiology 2014, 45: 771-776. PMID: 25256152, DOI: 10.1007/s00247-014-3159-x.Peer-Reviewed Original ResearchConceptsYears of ageShort statureRadiologic findingsJoint laxityMidface hypoplasiaLeptodactylic typeSevere genu valgumTypical radiologic findingsPostnatal short statureDe novo p.Whole-exome sequencingInitial radiographsSevere involvementRadiographic findingsHip dislocationGenu valgumKnee subluxationLigamentous laxitySmall epiphysisRare disorderDistal metaphysisProximal phalanxRadiologic hallmarksNovo p.First examinationAutosomal recessive spastic tetraplegia caused by AP4M1 and AP4B1 gene mutation: Expansion of the facial and neuroimaging features
Tüysüz B, Bilguvar K, Koçer N, Yalçınkaya C, Çağlayan O, Gül E, Şahin S, Çomu S, Günel M. Autosomal recessive spastic tetraplegia caused by AP4M1 and AP4B1 gene mutation: Expansion of the facial and neuroimaging features. American Journal Of Medical Genetics Part A 2014, 164: 1677-1685. PMID: 24700674, DOI: 10.1002/ajmg.a.36514.Peer-Reviewed Original ResearchMeSH KeywordsAdolescentBasic Helix-Loop-Helix Leucine Zipper Transcription FactorsBrainChildDNA Mutational AnalysisDNA-Binding ProteinsFaciesFemaleGenes, RecessiveGenetic Association StudiesHomozygoteHumansMagnetic Resonance ImagingMaleMutationNeuroimagingPedigreePhenotypeQuadriplegiaRNA-Binding ProteinsSiblingsConceptsAdaptor protein complex 4Tetraplegic cerebral palsySevere intellectual disabilitySpastic tetraplegiaCerebral palsySpastic tetraplegic cerebral palsyIntellectual disabilityStereotypic laughterCranial imaging findingsWhite matter volumeWhole-exome sequencingNovel homozygous mutationAsymmetrical ventriculomegalyCranial MRIImaging findingsClinical findingsNeuroimaging featuresBrain abnormalitiesCommon findingCorpus callosumAutosomal recessive phenotypePairs of siblingsPatientsSimilar facial featuresMatter volume