Joerg Bewersdorf, PhD
Harvey and Kate Cushing Professor of Cell Biology, Professor of Biomedical Engineering, and Professor of PhysicsCards
Appointments
Additional Titles
Vice Chair for Diversity, Equity and Inclusion, Cell Biology
Contact Info
Cell Biology
PO Box 208002, 333 Cedar Street
New Haven, CT 06520-8002
United States
Appointments
Additional Titles
Vice Chair for Diversity, Equity and Inclusion, Cell Biology
Contact Info
Cell Biology
PO Box 208002, 333 Cedar Street
New Haven, CT 06520-8002
United States
Appointments
Additional Titles
Vice Chair for Diversity, Equity and Inclusion, Cell Biology
Contact Info
Cell Biology
PO Box 208002, 333 Cedar Street
New Haven, CT 06520-8002
United States
About
Titles
Harvey and Kate Cushing Professor of Cell Biology, Professor of Biomedical Engineering, and Professor of Physics
Vice Chair for Diversity, Equity and Inclusion, Cell Biology
Biography
Joerg Bewersdorf is the Harvey and Kate Cushing Professor of Cell Biology and Professor of Biomedical Engineering and of Physics at Yale University. He received his Master's degree (Dipl. Phys., 1998) and his doctoral degree in physics (Dr. rer. nat., 2002) from the University of Heidelberg training with Dr. Stefan W. Hell at the Max Planck Institute for Biophysical Chemistry in Goettingen, Germany. Since 2009, after 4 years at The Jackson Laboratory in Bar Harbor, Maine, he has been leading a research group at Yale University focusing on the development of new light microscopy techniques and their application to biomedical research. An optical physicist/biophysicist by training, Dr. Bewersdorf has been a long-time contributor to the field of super-resolution light microscopy development and the application of these techniques to cell biological questions.
Appointments
Cell Biology
ProfessorPrimary
Other Departments & Organizations
- Biochemistry, Quantitative Biology, Biophysics and Structural Biology (BQBS)
- Cell Biology
- Cell Biology Research
- Diabetes Research Center
- Kavli Institute for Neuroscience
- Molecular Cell Biology, Genetics and Development
- Yale Combined Program in the Biological and Biomedical Sciences (BBS)
- Yale Ventures
- YCCEH
Education & Training
- Postdoctoral fellow
- Max Planck Institute for Biophysical Chemistry (2005)
- PhD
- University of Heidelberg (2002)
Research
Overview
Our laboratory develops super-resolution Stimulated Emission Depletion (STED) microscopy, Single-molecule Localization Microscopy (FPALM/PALM/STORM/DNA-PAINT, etc.) and pan-Expansion Microscopy (pan-ExM) techniques. We are actively developing these methods to improve the capabilities (speed, 3D resolution, robustness, multicolor labeling) of these imaging techniques and thereby expand the application range and impact of super-resolution microscopy. In collaboration with a diverse set of research groups at Yale University and outside, we apply our new techniques to current biomedical questions, in particular related to the endoplasmic reticulum, the Golgi complex, and the cell nucleus.
Medical Research Interests
ORCID
0000-0002-4085-7020- View Lab Website
Bewersdorf Homepage
Research at a Glance
Yale Co-Authors
Publications Timeline
Research Interests
Derek Toomre, PhD
Karla M Neugebauer, PhD
Maohan Su
Euisoon Park
Jaime Grutzendler, MD
John MacMicking, PhD
Microscopy, Fluorescence
Endoplasmic Reticulum
Cell Nucleus
Publications
Featured Publications
PLSCR1 is a cell-autonomous defence factor against SARS-CoV-2 infection
Xu D, Jiang W, Wu L, Gaudet R, Park E, Su M, Cheppali S, Cheemarla N, Kumar P, Uchil P, Grover J, Foxman E, Brown C, Stansfeld P, Bewersdorf J, Mothes W, Karatekin E, Wilen C, MacMicking J. PLSCR1 is a cell-autonomous defence factor against SARS-CoV-2 infection. Nature 2023, 619: 819-827. PMID: 37438530, PMCID: PMC10371867, DOI: 10.1038/s41586-023-06322-y.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsC-terminal β-barrel domainSpike-mediated fusionCell-autonomous defenseLarge-scale exome sequencingΒ-barrel domainGenome-wide CRISPRSARS-CoV-2 infectionHost cell cytosolScramblase activityPhospholipid scramblaseLive SARS-CoV-2 infectionHuman lung epitheliumPLSCR1SARS-CoV-2 USASingle-molecule switchingSARS-CoV-2 variantsExome sequencingHuman populationRestriction factorsViral RNANew SARS-CoV-2 variantsSARS-CoV-2Robust activityLung epitheliumDefense factorsChromatin expansion microscopy reveals nanoscale organization of transcription and chromatin
Pownall M, Miao L, Vejnar C, M'Saad O, Sherrard A, Frederick M, Benitez M, Boswell C, Zaret K, Bewersdorf J, Giraldez A. Chromatin expansion microscopy reveals nanoscale organization of transcription and chromatin. Science 2023, 381: 92-100. PMID: 37410825, PMCID: PMC10372697, DOI: 10.1126/science.ade5308.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsZygotic genome activationTranscriptional elongationExpansion microscopyRNA polymerase IIChromatin regulatory factorsEnhancer-promoter contactsGenome activationChromatin organizationNuclear organizationPolymerase IIPol IIFactor NanogTranscription factorsGene expressionRegulatory factorsChromatinNanoscale organizationNanogTranscriptionElongationNucleosomesUniversal processPromoterEmbryosEnhancerFluorogenic DNA-PAINT for faster, low-background super-resolution imaging
Chung KKH, Zhang Z, Kidd P, Zhang Y, Williams ND, Rollins B, Yang Y, Lin C, Baddeley D, Bewersdorf J. Fluorogenic DNA-PAINT for faster, low-background super-resolution imaging. Nature Methods 2022, 19: 554-559. PMID: 35501386, PMCID: PMC9133131, DOI: 10.1038/s41592-022-01464-9.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsSlow imaging speedSuper-resolution imagingSuper-resolution microscopy methodsDNA-PAINTOptical sectioningImaging speedFast imagingNanometer resolutionDNA-based points accumulationHigh-fidelity imagesUnbound fluorophoresMicroscopy methodsDocking strandsHigh backgroundPoint accumulationNanoscale topographyProbeDMA-tudor interaction modules control the specificity of in vivo condensates
Courchaine EM, Barentine AES, Straube K, Lee DR, Bewersdorf J, Neugebauer KM. DMA-tudor interaction modules control the specificity of in vivo condensates. Cell 2021, 184: 3612-3625.e17. PMID: 34115980, PMCID: PMC8402948, DOI: 10.1016/j.cell.2021.05.008.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsThree-dimensional adaptive optical nanoscopy for thick specimen imaging at sub-50-nm resolution
Hao X, Allgeyer ES, Lee DR, Antonello J, Watters K, Gerdes JA, Schroeder LK, Bottanelli F, Zhao J, Kidd P, Lessard MD, Rothman JE, Cooley L, Biederer T, Booth MJ, Bewersdorf J. Three-dimensional adaptive optical nanoscopy for thick specimen imaging at sub-50-nm resolution. Nature Methods 2021, 18: 688-693. PMID: 34059828, PMCID: PMC7610943, DOI: 10.1038/s41592-021-01149-9.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsAdaptive optics schemeBest possible spatial resolutionPossible spatial resolutionOptical nanoscopyOptics schemeDiffraction limitDark stateOptical aberrationsNanoscopy methodsThin samplesThick specimenFluorescent moleculesSpatial resolutionThick specimensNanoscopeIsotropic resolutionResolutionNanoscopyPath geometryFluorescence microscopyMicroscopeMicroscopyImplementation of a 4Pi-SMS super-resolution microscope
Wang J, Allgeyer ES, Sirinakis G, Zhang Y, Hu K, Lessard MD, Li Y, Diekmann R, Phillips MA, Dobbie IM, Ries J, Booth MJ, Bewersdorf J. Implementation of a 4Pi-SMS super-resolution microscope. Nature Protocols 2020, 16: 677-727. PMID: 33328610, PMCID: PMC9118368, DOI: 10.1038/s41596-020-00428-7.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsLight microscopy of proteins in their ultrastructural context
M’Saad O, Bewersdorf J. Light microscopy of proteins in their ultrastructural context. Nature Communications 2020, 11: 3850. PMID: 32737322, PMCID: PMC7395138, DOI: 10.1038/s41467-020-17523-8.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsUltrastructural contextLocal protein densityConventional confocal microscopeCellular nanoarchitectureOptical contrastSpecific proteinsElectron microscopyFluorescence microscopyLight microscopyProteinBulk labelingProtein densityConfocal microscopeStandard light microscopyIntracellular spaceMicroscopyProteomeCellsNanoscaleMicroscopeNew principleDiscoveryLabelingPhysical expansionDensityAn integrated platform for high-throughput nanoscopy
Barentine A, Lin Y, Courvan E, Kidd P, Liu M, Balduf L, Phan T, Rivera-Molina F, Grace M, Marin Z, Lessard M, Rios Chen J, Wang S, Neugebauer K, Bewersdorf J, Baddeley D. An integrated platform for high-throughput nanoscopy. Nature Biotechnology 2023, 41: 1549-1556. PMID: 36914886, PMCID: PMC10497732, DOI: 10.1038/s41587-023-01702-1.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsLarge data volumesUser-defined extensionsPlugin frameworkData compressionData volumeCamera frameFrame rateAnalysis platformAcquisition taskPlatformIntegrated acquisitionThroughputSingle-molecule localization microscopyTypical throughputHundreds of cellsThree-dimensional fluorescenceFrameworkTens of cellsLocalization microscopyWorkflow
2024
VPS13B is localized at the interface between Golgi cisternae and is a functional partner of FAM177A1
Ugur B, Schueder F, Shin J, Hanna M, Wu Y, Leonzino M, Su M, McAdow A, Wilson C, Postlethwait J, Solnica-Krezel L, Bewersdorf J, De Camilli P. VPS13B is localized at the interface between Golgi cisternae and is a functional partner of FAM177A1. Journal Of Cell Biology 2024, 223: e202311189. PMID: 39331042, PMCID: PMC11451052, DOI: 10.1083/jcb.202311189.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsLipid transportGolgi complex proteinGolgi subcompartmentsGolgi membranesGolgi cisternaeProtein familyFunctional partnersGolgi complexKO cellsComplex proteinsFAM177A1GolgiVPS13BAdjacent membranesMutationsProteinCohen syndromeLipidOrthologsInteractorsBrefeldinMembraneOrganellesSubcompartmentsDevelopmental disordersRefining Biologically Inconsistent Segmentation Masks with Masked Autoencoders
Sauer A, Tian Y, Bewersdorf J, Rittscher J. Refining Biologically Inconsistent Segmentation Masks with Masked Autoencoders. 2024, 00: 6904-6912. DOI: 10.1109/cvprw63382.2024.00684.Peer-Reviewed Original Research
News & Links
News
- May 03, 2024
Kuan & Bewersdorf Honored With 2024 Kavli Innovative Teams Awards
- April 09, 2024
Advanced Microscopy Technique Offers a New Look Inside Cells
- March 28, 2024Source: Cell
FLASH-PAINT enables highly-multiplexed super-resolution microscopy
- November 01, 2023
Supersize the cell
Related Links
Get In Touch
Contacts
Cell Biology
PO Box 208002, 333 Cedar Street
New Haven, CT 06520-8002
United States
Administrative Support
Locations
Sterling Hall of Medicine, I-Wing
Lab
333 Cedar Street, Ste E91
New Haven, CT 06510
Appointments
203.737.5897General Information
203.737.6461Sterling Hall of Medicine, I-Wing
Academic Office
333 Cedar Street, Ste Suite E54B
New Haven, CT 06510
Appointments
203.737.5704