2001
Autostimulation of the Epstein-Barr Virus BRLF1 Promoter Is Mediated through Consensus Sp1 and Sp3 Binding Sites
Ragoczy T, Miller G. Autostimulation of the Epstein-Barr Virus BRLF1 Promoter Is Mediated through Consensus Sp1 and Sp3 Binding Sites. Journal Of Virology 2001, 75: 5240-5251. PMID: 11333906, PMCID: PMC114930, DOI: 10.1128/jvi.75.11.5240-5251.2001.Peer-Reviewed Original ResearchMeSH KeywordsBase SequenceBinding SitesB-LymphocytesCell Line, TransformedDNA-Binding ProteinsGene DeletionGene Expression Regulation, ViralHerpesvirus 4, HumanHeterotrimeric GTP-Binding ProteinsHumansImmediate-Early ProteinsMolecular Sequence DataMutagenesis, Site-DirectedPromoter Regions, GeneticProtein BindingReceptors, Cell SurfaceSp1 Transcription FactorSp3 Transcription FactorTrans-ActivatorsTranscription FactorsViral ProteinsVirus ActivationConceptsSp1/Sp3 siteLytic cycleSp3 transcription factorsBinding of Sp1Transcriptional start siteSite-directed mutagenesisGel shift analysisBRLF1 promoterReporter-based assaysEpstein–Barr virus Rta proteinCellular Sp1Own geneConsensus Sp1Transcriptional activationCellular proteinsTranscription factorsStart siteDNA bindingOwn expressionMutagenesis studiesRta proteinSp1Reporter activityTranscription factor Zif268B cells
1999
Kaposi’s Sarcoma-Associated Herpesvirus Encodes a bZIP Protein with Homology to BZLF1 of Epstein-Barr Virus
Lin S, Robinson D, Miller G, Kung H. Kaposi’s Sarcoma-Associated Herpesvirus Encodes a bZIP Protein with Homology to BZLF1 of Epstein-Barr Virus. Journal Of Virology 1999, 73: 1909-1917. PMID: 9971770, PMCID: PMC104432, DOI: 10.1128/jvi.73.3.1909-1917.1999.Peer-Reviewed Original Research
1998
The Epstein-Barr Virus Rta Protein Activates Lytic Cycle Genes and Can Disrupt Latency in B Lymphocytes
Ragoczy T, Heston L, Miller G. The Epstein-Barr Virus Rta Protein Activates Lytic Cycle Genes and Can Disrupt Latency in B Lymphocytes. Journal Of Virology 1998, 72: 7978-7984. PMID: 9733836, PMCID: PMC110133, DOI: 10.1128/jvi.72.10.7978-7984.1998.Peer-Reviewed Original ResearchMeSH KeywordsBase SequenceB-LymphocytesCell LineChloramphenicol O-AcetyltransferaseDNA PrimersDNA ReplicationDNA-Binding ProteinsGene Expression Regulation, ViralHerpesvirus 4, HumanHumansImmediate-Early ProteinsPromoter Regions, GeneticTrans-ActivatorsTranscription FactorsViral ProteinsVirus LatencyConceptsEpstein-Barr virusLytic cycle genesB lymphocytesEpstein–Barr virus Rta proteinEpithelial cellsLytic cycleDisruption of latencyViral lytic cycleB cell linesEBV entryImmediate early viral genesBZLF1LymphocytesCycle genesExpression of RTARTA functionBRLF1Rta proteinDownstream targetsViral genesViral DNA replicationExpressionCellsA Functionally Distinct TATA Box Required for Late Progression through the Epstein-Barr Virus Life Cycle
Serio T, Cahill N, Prout M, Miller G. A Functionally Distinct TATA Box Required for Late Progression through the Epstein-Barr Virus Life Cycle. Journal Of Virology 1998, 72: 8338-8343. PMID: 9733880, PMCID: PMC110205, DOI: 10.1128/jvi.72.10.8338-8343.1998.Peer-Reviewed Original ResearchA viral gene that activates lytic cycle expression of Kaposi’s sarcoma-associated herpesvirus
Sun R, Lin S, Gradoville L, Yuan Y, Zhu F, Miller G. A viral gene that activates lytic cycle expression of Kaposi’s sarcoma-associated herpesvirus. Proceedings Of The National Academy Of Sciences Of The United States Of America 1998, 95: 10866-10871. PMID: 9724796, PMCID: PMC27987, DOI: 10.1073/pnas.95.18.10866.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceBase SequenceCloning, MolecularDNA PrimersDNA, ComplementaryGene Expression Regulation, NeoplasticGenes, ViralHerpesvirus 4, HumanHerpesvirus 8, HumanHumansMolecular Sequence DataSarcoma, KaposiSequence Homology, Amino AcidTranscription, GeneticTumor Cells, CulturedVirus ActivationConceptsEpstein-Barr virusKaposi's sarcoma-associated herpesvirusSarcoma-associated herpesvirusSmall viral capsid antigenPathogenesis of KSHVLytic cycle gene expressionViral capsid antigenLatent viral genomeCapsid antigenLytic cycle genesInterleukin-6Immediate early genesViral cytokineEarly lytic genesLytic genesHerpesvirusVirusViral genesViral genomeExpressionGene expressionCytokinesPathogenesisCycle genesGenes
1995
Transmissible Retrovirus in Epstein-Burr Virus-Producer B95-8 Cells
Sun R, Grogan E, Shedd D, Bykovsky A, Kushnaryov V, Grossberg S, Miller G. Transmissible Retrovirus in Epstein-Burr Virus-Producer B95-8 Cells. Virology 1995, 209: 374-383. PMID: 7778272, DOI: 10.1006/viro.1995.1269.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsBase SequenceBetaretrovirusB-LymphocytesCallithrixCell LineCloning, MolecularDNA PrimersDNA, ComplementaryGene LibraryGene Products, gagGenes, gagHerpesvirus 4, HumanHumansMicroscopy, ElectronMolecular Sequence DataPolymerase Chain ReactionRepetitive Sequences, Nucleic AcidSaimiriT-LymphocytesVirus ReplicationConceptsEpstein-Barr virusB95-8 cellsAbsence of EBVCell linesB95-8 isolateB95-8 strainMarmoset cell linesHuman lymphoid cell linesT cell linesLymphoid cell linesType D retrovirusHuman BLymphocyte immortalizationInfectious virusViral replicationHuman isolatesGag regionBiologic propertiesTransmissible retrovirusUltrastructural appearanceD retrovirusesAmino acid changesVirusSMRVGag sequences
1992
Detection of Epstein‐Barr virus in the brain by the polymerase chain reaction
Pedneault L, Katz B, Miller G. Detection of Epstein‐Barr virus in the brain by the polymerase chain reaction. Annals Of Neurology 1992, 32: 184-192. PMID: 1324632, DOI: 10.1002/ana.410320210.Peer-Reviewed Original ResearchConceptsEpstein-Barr virusEBV DNAPolymerase chain reactionRole of EBVChain reactionCentral nervous system syndromeDiverse neurological syndromesKidney transplant recipientsHerpes group virusesTransplant recipientsMetabolic encephalopathiesBrain biopsyImmunodeficiency syndromeNeurological syndromeImmunodeficient hostsEBV genomeBrain specimensViral isolationPatientsGroup virusesSerological testsSyndromeBrainVirusEncephalitis
1990
Topological Effects of EBNA 1 on oriP
Orlowski R, Miller G. Topological Effects of EBNA 1 on oriP. Advances In Experimental Medicine And Biology 1990, 278: 115-124. PMID: 1963028, DOI: 10.1007/978-1-4684-5853-4_12.Peer-Reviewed Original ResearchMeSH KeywordsAntibodies, MonoclonalAntigens, ViralBase SequenceBinding SitesDeoxyribonuclease IV (Phage T4-Induced)DNA, SuperhelicalDNA, ViralEndodeoxyribonucleasesEpstein-Barr Virus Nuclear AntigensEscherichia coliEscherichia coli ProteinsGenes, ViralHerpesvirus 4, HumanMolecular Sequence DataNucleic Acid ConformationPlasmidsRecombinant ProteinsRepetitive Sequences, Nucleic AcidTransformation, Bacterial
1988
Polymorphisms of the region of the Epstein-Barr virus genome which disrupts latency
Jenson H, Miller G. Polymorphisms of the region of the Epstein-Barr virus genome which disrupts latency. Virology 1988, 165: 549-564. PMID: 2841800, DOI: 10.1016/0042-6822(88)90599-5.Peer-Reviewed Original Research
1985
Constitutive expression of Epstein-Barr virus-encoded RNAs and nuclear antigen during latency and after induction of Epstein-Barr virus replication
Weigel R, Fischer D, Heston L, Miller G. Constitutive expression of Epstein-Barr virus-encoded RNAs and nuclear antigen during latency and after induction of Epstein-Barr virus replication. Journal Of Virology 1985, 53: 254-259. PMID: 2981344, PMCID: PMC255024, DOI: 10.1128/jvi.53.1.254-259.1985.Peer-Reviewed Original ResearchConceptsEpstein-Barr virus-encoded RNAVirus-encoded RNAEpstein-Barr virus replicationNuclear antigenEpstein-Barr virusLatent gene productsEpstein-Barr virus gene productsHR-1 cellsVirus gene productsViral variantsVirus replicationAntigen mRNAAbsence of inductionViral DNAAntigenInductionMethod of inductionPhorbol esterViral polypeptidesViral transcriptsGene productsCytoplasmic abundanceExpressionConstitutive expressionConstitutive levels
1984
Epstein-Barr virus with heterogeneous DNA disrupts latency
Miller G, Rabson M, Heston L. Epstein-Barr virus with heterogeneous DNA disrupts latency. Journal Of Virology 1984, 50: 174-182. PMID: 6321789, PMCID: PMC255597, DOI: 10.1128/jvi.50.1.174-182.1984.Peer-Reviewed Original ResearchConceptsEpstein-Barr virusLatent Epstein-Barr virusEarly antigenRaji cellsViral synthesisX50-7 cellsHet DNABurkitt lymphoma linesActivated virusEBV DNANeonatal lymphocytesEBV replicationEBV sequencesX50-7Restriction endonuclease polymorphismAntigenLymphoma linesVirusRare variantsDefective virusLower ratesSuperinfectionCell spreadBiological effectsCells
1981
Copy number and location of Epstein-Barr viral genomes in neonatal human lymphocytes transformed after separation by size and treatment with mitogens
Anvret M, Miller G. Copy number and location of Epstein-Barr viral genomes in neonatal human lymphocytes transformed after separation by size and treatment with mitogens. Virology 1981, 111: 47-55. PMID: 6263010, DOI: 10.1016/0042-6822(81)90652-8.Peer-Reviewed Original ResearchConceptsNeonatal human lymphocytesEBV DNACell linesStaphylococcus aureusEpstein-Barr viral genomeHuman lymphocytesEBV DNA copiesEpstein-Barr virusPurified B lymphocytesFresh umbilical cordsB95-8 strainFicoll-Hypaque gradientDifferent cell linesEB virusMedian numberUmbilical cordB lymphocytesViral infectionViral genomeLymphocytesLipopolysaccharideSmall cell fractionPhysiologic stateTime of exposureCell fraction