2023
Electrocatalytic, Homogeneous Ammonia Oxidation in Water to Nitrate and Nitrite with a Copper Complex
Liu H, Lant H, Troiano J, Hu G, Mercado B, Crabtree R, Brudvig G. Electrocatalytic, Homogeneous Ammonia Oxidation in Water to Nitrate and Nitrite with a Copper Complex. ECS Meeting Abstracts 2023, MA2023-01: 2691-2691. DOI: 10.1149/ma2023-01552691mtgabs.Peer-Reviewed Original ResearchWater oxidationAmmonia oxidationO bond formationInitial mechanistic studiesMolecular catalystsCopper complexesMetal electrocatalystsFaradaic efficiencyAqueous mediaBond formationHigh selectivityOxidation processN2 productTitle reactionOxidationMechanistic studiesCatalysisComplexesRoom temperatureFriendly productionWaterElectrocatalystsElectrocatalyticNitrateCatalystLigand Tuning in Cu(pyalk)2 Water Oxidation Electrocatalysis
Cody C, Caes Z, Capobianco M, Mercado B, Crabtree R, Brudvig G. Ligand Tuning in Cu(pyalk)2 Water Oxidation Electrocatalysis. Inorganics 2023, 11: 229. DOI: 10.3390/inorganics11060229.Peer-Reviewed Original ResearchWater oxidationWater oxidation electrocatalysisAnalogous copper complexesWater oxidation electrocatalystsArtificial photosynthetic systemsElectron-donating groupsSolar energy conversionPyalk ligandCatalyst tuningLigand tuningOxidation electrocatalystsCopper complexesFaradaic efficiencyLigand modificationCatalytic propertiesLigand formsAttractive scaffoldFirst-principles predictionPara positionGood activityMolecular systemsPhotosynthetic systemsEnergy conversionComplexesOxidationRedox leveling of the Kok cycle of photosystem II established by water ligand binding to the oxygen evolving complex
Liu J, Yang K, Brudvig G, Batista V. Redox leveling of the Kok cycle of photosystem II established by water ligand binding to the oxygen evolving complex. Biophysical Journal 2023, 122: 199a-200a. DOI: 10.1016/j.bpj.2022.11.1210.Peer-Reviewed Original Research
2021
Organometallic complexes as preferred precursors to form molecular Ir(pyalk) coordination complexes for catalysis of oxygen evolution
Hu G, Crabtree R, Brudvig G. Organometallic complexes as preferred precursors to form molecular Ir(pyalk) coordination complexes for catalysis of oxygen evolution. Inorganica Chimica Acta 2021, 526: 120507. DOI: 10.1016/j.ica.2021.120507.Peer-Reviewed Original ResearchOrganometallic complexesCoordination complexesCatalyst precursorsOrganometallic ligandsOrganometallic precursorsOxygen evolution catalystsUseful catalyst precursorsBlue solutionPyalk ligandCoordination precursorsChelating ligandHomogeneous catalystsIrOx nanoparticlesActive speciesNanoparticle formationNanoparticle generationOxygen evolutionIsomeric mixtureOxidative activationCore unitLigandsCatalystComplexesActivation processPrecursors8.22 Oxygen Evolution of Photosystem II
Huang H, Brudvig G. 8.22 Oxygen Evolution of Photosystem II. 2021, 569-588. DOI: 10.1016/b978-0-12-409547-2.14871-1.Peer-Reviewed Original ResearchProtein complex photosystem IIWater oxidation reactionPhotosystem IIWater oxidation mechanismOxygen-evolving complexSolar energy storageNatural photosynthesisKey reactionOxygen evolutionEnergy storageReactionPhotosynthesisCurrent knowledgeDetailed mechanismEssential componentGlobal scaleComplexesMechanism
2020
Cryo-EM Structure of Monomeric Photosystem II from Synechocystis sp. PCC 6803 Lacking the Water-Oxidation Complex
Gisriel C, Zhou K, Huang H, Debus R, Xiong Y, Brudvig G. Cryo-EM Structure of Monomeric Photosystem II from Synechocystis sp. PCC 6803 Lacking the Water-Oxidation Complex. Joule 2020, 4: 2131-2148. DOI: 10.1016/j.joule.2020.07.016.Peer-Reviewed Original ResearchOxygen-evolving complexPhotosystem II enzymeWater oxidation complexWater oxidationMetal clustersMechanism of photoactivationActive siteMonomeric photosystem IIPhotosystem IICryo-EM structureStructural rearrangementsComplexesPhotoactivationSynechocystis spPeripheral subunitsCationsComputational techniquesOxidationOverall biogenesisStructureMesophilic cyanobacteriumOxygenPCC 6803II enzymesPSIISynthesis of organometallic pincer-supported cobalt(II) complexes
Townsend T, Bernskoetter W, Brudvig G, Hazari N, Lant H, Mercado B. Synthesis of organometallic pincer-supported cobalt(II) complexes. Polyhedron 2020, 177: 114308. DOI: 10.1016/j.poly.2019.114308.Peer-Reviewed Original Research
2019
Synthesis and Reactivity of Paramagnetic Nickel Polypyridyl Complexes Relevant to C(sp2)–C(sp3)Coupling Reactions
Beromi M, Brudvig G, Hazari N, Lant H, Mercado B. Synthesis and Reactivity of Paramagnetic Nickel Polypyridyl Complexes Relevant to C(sp2)–C(sp3)Coupling Reactions. Angewandte Chemie 2019, 131: 6155-6159. DOI: 10.1002/ange.201901866.Peer-Reviewed Original ResearchModification of a pyridine-alkoxide ligand during the synthesis of coordination compounds
Shopov D, Sharninghausen L, Sinha S, Mercado B, Brudvig G, Crabtree R. Modification of a pyridine-alkoxide ligand during the synthesis of coordination compounds. Inorganica Chimica Acta 2019, 484: 75-78. DOI: 10.1016/j.ica.2018.09.020.Peer-Reviewed Original ResearchPyridine-alkoxide ligandsWater oxidation catalysisHigher oxidation statesCoordination compoundsPincer ligandGeminal methyl groupsCatalytic conditionsOxidation stateOxidation catalystReaction conditionsMinor byproductsAliphatic alkenesMinor productsOxidative conditionsMethyl groupN-oxideLigandsBlue solutionCH groupPincerStructural analoguesSynthesisComplexesCatalystCentral unit
2018
Some crystal growth strategies for diffraction structure studies of iridium complexes
Sharninghausen L, Sinha S, Shopov D, Brudvig G, Crabtree R. Some crystal growth strategies for diffraction structure studies of iridium complexes. Inorganica Chimica Acta 2018, 480: 183-188. DOI: 10.1016/j.ica.2018.05.017.Peer-Reviewed Original ResearchHydrogen bonding groupsHigher oxidation statesCrystal growth strategiesLarge enough crystalsCluster anionsIr complexesCluster cationsIridium complexesHydrogen bondingOxidation stateStandard crystallization methodsGel methodBonding groupsEnough crystalsCrystallization methodStructure studiesComplexesNeutron diffractionAnionsCationsHydrideBondingDiolDiffractionButaneWater-Nucleophilic Attack Mechanism for the CuII(pyalk)2 Water-Oxidation Catalyst
Rudshteyn B, Fisher K, Lant H, Yang K, Mercado B, Brudvig G, Crabtree R, Batista V. Water-Nucleophilic Attack Mechanism for the CuII(pyalk)2 Water-Oxidation Catalyst. ACS Catalysis 2018, 8: 7952-7960. DOI: 10.1021/acscatal.8b02466.Peer-Reviewed Original ResearchKinetic isotope effectsWater nucleophilic attack mechanismWater oxidation catalystsWater nucleophilic attackD Kinetic Isotope EffectO bond formationUV-visible spectraDensity functional theoryElectrochemical stepWater oxidationElectrochemical analysisTurnover frequencyDerivative complexesBond formationRadical speciesRational designCis formFunctional theoryIsotope effectRate-limiting stepCatalystComplexesAttack mechanismMechanistic findingsDeprotonationCatalysing water oxidation using nature’s metal
Brudvig G. Catalysing water oxidation using nature’s metal. Nature Catalysis 2018, 1: 10-11. DOI: 10.1038/s41929-017-0013-1.Peer-Reviewed Original Research
2017
Synthesis and Characterization of Iridium(V) Coordination Complexes With an N,O‐Donor Organic Ligand
Sharninghausen L, Sinha S, Shopov D, Mercado B, Balcells D, Brudvig G, Crabtree R. Synthesis and Characterization of Iridium(V) Coordination Complexes With an N,O‐Donor Organic Ligand. Angewandte Chemie 2017, 129: 13227-13231. DOI: 10.1002/ange.201707593.Peer-Reviewed Original ResearchCoordination complexesO-donor organic ligandsMononuclear coordination complexesO-donor environmentMetal-centered oxidationX-ray crystallographyOrganic ligandsDonor strengthAlkoxide groupsDFT calculationsD orbitalsUnprecedented stabilityComplexesLigandsOxidationIR-VIsomersXPSCrystallographyV complexSynthesisCharacterizationStabilityCalculationsDegradationAntimony Complexes for Electrocatalysis: Activity of a Main‐Group Element in Proton Reduction
Jiang J, Materna K, Hedström S, Yang K, Crabtree R, Batista V, Brudvig G. Antimony Complexes for Electrocatalysis: Activity of a Main‐Group Element in Proton Reduction. Angewandte Chemie 2017, 129: 9239-9243. DOI: 10.1002/ange.201704700.Peer-Reviewed Original ResearchMain group catalysisRedox-active ligandsMain group complexesQuantum chemistry calculationsMain group elementsViable electrocatalystsPorphyrin ligandChemistry calculationsHydroxy ligandsElectrocatalysis applicationsProton reductionCatalytic propertiesAntimony complexesRedox activityAxial ligandsCatalytic cycleSb centerLigandsCatalysisComplexesElectrocatalysisElectrocatalystsPorphyrinsReactionAcidElectrocatalytic Water Oxidation by a Copper(II) Complex of an Oxidation-Resistant Ligand
Fisher K, Materna K, Mercado B, Crabtree R, Brudvig G. Electrocatalytic Water Oxidation by a Copper(II) Complex of an Oxidation-Resistant Ligand. ACS Catalysis 2017, 7: 3384-3387. DOI: 10.1021/acscatal.7b00494.Peer-Reviewed Original ResearchWater oxidationElectrocatalytic water oxidationPotential electrolysis experimentsWater oxidation electrocatalystsStrong donor characterCatalyst degradationTurnover frequencyElectrolysis experimentsDonor characterCatalytic turnoverBasic conditionsOxidationHarsh conditionsOxidation resistanceElectrocatalystsCatalystLigandsCopperComplexesO2NHEFormationDegradationSynthesis of pyridine-alkoxide ligands for formation of polynuclear complexes
Shopov D, Sharninghausen L, Sinha S, Borowski J, Mercado B, Brudvig G, Crabtree R. Synthesis of pyridine-alkoxide ligands for formation of polynuclear complexes. New Journal Of Chemistry 2017, 41: 6709-6719. DOI: 10.1039/c7nj01845b.Peer-Reviewed Original ResearchO-donor ligandsPolynuclear complexesFirst-row transition metalsPyridine-alkoxide ligandsInexpensive starting materialsOne-step synthesisX-ray crystallographyPolynuclear clustersTransition metalsStarting materialScalable procedureGeneral formulaLigandsEffective bindingLarge-scale productionLigand 2Chelation powerComplexesSynthesisDenticityCluster formationDeprotonationFormationCrystallographyChromatography
2015
Mechanism of Manganese-Catalyzed Oxygen Evolution from Experimental and Theoretical Analyses of 18O Kinetic Isotope Effects
Khan S, Yang K, Ertem M, Batista V, Brudvig G. Mechanism of Manganese-Catalyzed Oxygen Evolution from Experimental and Theoretical Analyses of 18O Kinetic Isotope Effects. ACS Catalysis 2015, 5: 7104-7113. DOI: 10.1021/acscatal.5b01976.Peer-Reviewed Original ResearchBiomimetic oxomanganese complexesO2 evolutionOxomanganese complexesElusive reaction intermediatesKinetic oxygen isotope effectO2-evolving complexPhotosystem IIFirst bindsTurnover conditionsPrevious kinetic studiesComplexesOxygen evolutionComplete mechanismEvolutionMechanismSpeciesBindsStrong evidenceIntermediatesTurnoverHighest barrier stepKinetic isotope effectsComparison of dppf‐Supported Nickel Precatalysts for the Suzuki–Miyaura Reaction: The Observation and Activity of Nickel(I)
Guard L, Beromi M, Brudvig G, Hazari N, Vinyard D. Comparison of dppf‐Supported Nickel Precatalysts for the Suzuki–Miyaura Reaction: The Observation and Activity of Nickel(I). Angewandte Chemie 2015, 127: 13550-13554. DOI: 10.1002/ange.201505699.Peer-Reviewed Original ResearchSuzuki–Miyaura reactionNi II complexesSimilar catalytic activityDppf ligandNickel precatalystsNi precatalystsOxidation stateCatalytic activityPrecatalystHeterocyclic substratesNi 0Potential chemicalI speciesReactionII complexesRoom temperaturePd systemLigandsComplexesChemicalsNiSignificant amountSubstrate
2013
3.15 Complex Systems: Photosynthesis
Pokhrel R, Brudvig G. 3.15 Complex Systems: Photosynthesis. 2013, 385-422. DOI: 10.1016/b978-0-08-097774-4.00313-2.Peer-Reviewed Original ResearchOxygen-evolving complexQuantum mechanics/molecular mechanicsPhotosystem IIOO bond formationDensity functional theory calculationsComplete catalytic cycleFunctional theory calculationsProton exit pathwayIron-sulfur centersMetal centerNatural photosynthesisModel complexesCatalytic cycleBond formationMolecular mechanicsFunctional mimicsElectronic characterizationTheory calculationsRole of chlorideOxygenic photosynthesisComplexesDetailed mechanismExit pathwayHydrogenasesPlastocyaninComputational Studies of the Oxygen-Evolving Complex of Photosystem II and Biomimetic Oxomanganese Complexes for Renewable Energy Applications
Rivalta I, Brudvig G, Batista V. Computational Studies of the Oxygen-Evolving Complex of Photosystem II and Biomimetic Oxomanganese Complexes for Renewable Energy Applications. ACS Symposium Series 2013, 1133: 203-215. DOI: 10.1021/bk-2013-1133.ch011.Peer-Reviewed Original Research