2023
Detection of Left Ventricular Systolic Dysfunction From Electrocardiographic Images
Sangha V, Nargesi A, Dhingra L, Khunte A, Mortazavi B, Ribeiro A, Banina E, Adeola O, Garg N, Brandt C, Miller E, Ribeiro A, Velazquez E, Giatti L, Barreto S, Foppa M, Yuan N, Ouyang D, Krumholz H, Khera R. Detection of Left Ventricular Systolic Dysfunction From Electrocardiographic Images. Circulation 2023, 148: 765-777. PMID: 37489538, PMCID: PMC10982757, DOI: 10.1161/circulationaha.122.062646.Peer-Reviewed Original ResearchMeSH KeywordsAdultElectrocardiographyHumansLongitudinal StudiesProspective StudiesVentricular Dysfunction, LeftVentricular Function, LeftConceptsLV systolic dysfunctionYale-New Haven HospitalVentricular systolic dysfunctionSystolic dysfunctionLV ejection fractionBrazilian Longitudinal StudyNew Haven HospitalEjection fractionCardiology clinicRegional hospitalLeft ventricular systolic dysfunctionCedars-Sinai Medical CenterAdult Health (ELSA-Brasil) cohortImpaired left-ventricular global longitudinal strain by feature-tracking cardiac MRI predicts mortality in systemic sclerosis
Feher A, Miller E, Peters D, Mojibian H, Sinusas A, Hinchcliff M, Baldassarre L. Impaired left-ventricular global longitudinal strain by feature-tracking cardiac MRI predicts mortality in systemic sclerosis. Rheumatology International 2023, 43: 849-858. PMID: 36894756, DOI: 10.1007/s00296-023-05294-6.Peer-Reviewed Original ResearchConceptsLate gadolinium enhancementLV-GLSSystemic sclerosisWorse survivalClinical indicationsImpaired left ventricular global longitudinal strainLeft ventricular global longitudinal strainPresence of LGECMR strainLV cardiac indexWorse LV-GLSLV ejection fractionCox regression analysisGlobal longitudinal strainLV cardiac outputGlobal radialCardiac indexOverall survivalRetrospective cohortEjection fractionPrognostic valueAdverse outcomesCardiac outputGadolinium enhancementRV strain
2021
Risk and predictors of mortality after implantable cardioverter-defibrillator implantation in patients with sarcoid cardiomyopathy
Higgins AY, Annapureddy AR, Wang Y, Minges KE, Bellumkonda L, Lampert R, Rosenfeld LE, Jacoby DL, Curtis JP, Miller EJ, Freeman JV. Risk and predictors of mortality after implantable cardioverter-defibrillator implantation in patients with sarcoid cardiomyopathy. American Heart Journal 2021, 246: 21-31. PMID: 34968442, DOI: 10.1016/j.ahj.2021.12.011.Peer-Reviewed Original ResearchMeSH KeywordsAtrial FibrillationDeath, Sudden, CardiacDefibrillators, ImplantableHeart FailureHumansMyocarditisRetrospective StudiesRisk FactorsSarcoidosisStroke VolumeVentricular Function, LeftConceptsNon-ischemic cardiomyopathyAtrial fibrillation/flutterChronic lung diseaseCardiac sarcoidosisHeart failureCS patientsNICM patientsICD implantationLung diseaseNew York Heart Association class III heart failureNational Cardiovascular Data Registry ICD RegistryNYHA class IV heart failureClass III heart failureClass IV heart failureImplantable cardioverter defibrillator implantationKaplan-Meier survival curvesCox proportional hazards modelPredictors of mortalityCardioverter-defibrillator implantationVentricular ejection fractionMultivariable logistic regressionPrior ventricular arrhythmiasProportional hazards modelRate of deathTime of implantationPrognostic Value of Phase Analysis for Predicting Adverse Cardiac Events Beyond Conventional Single-Photon Emission Computed Tomography Variables: Results From the REFINE SPECT Registry
Kuronuma K, Miller RJH, Otaki Y, Van Kriekinge SD, Diniz MA, Sharir T, Hu LH, Gransar H, Liang JX, Parekh T, Kavanagh PB, Einstein AJ, Fish MB, Ruddy TD, Kaufmann PA, Sinusas AJ, Miller EJ, Bateman TM, Dorbala S, Di Carli M, Tamarappoo BK, Dey D, Berman DS, Slomka PJ. Prognostic Value of Phase Analysis for Predicting Adverse Cardiac Events Beyond Conventional Single-Photon Emission Computed Tomography Variables: Results From the REFINE SPECT Registry. Circulation Cardiovascular Imaging 2021, 14: e012386. PMID: 34281372, PMCID: PMC8978932, DOI: 10.1161/circimaging.120.012386.Peer-Reviewed Original ResearchMeSH KeywordsAgedCanadaCoronary CirculationDisease ProgressionFemaleHumansIncidenceIsraelMaleMiddle AgedMyocardial IschemiaMyocardial Perfusion ImagingPredictive Value of TestsPrognosisRegistriesRisk AssessmentRisk FactorsStroke VolumeTomography, Emission-Computed, Single-PhotonUnited StatesVentricular Function, LeftConceptsMajor adverse cardiac eventsVentricular ejection fractionTotal perfusion deficitSingle photon emissionAdverse cardiac eventsEjection fractionPerfusion deficitsCardiac eventsPrognostic valueTomography myocardial perfusion imagingVentricular ejection fraction assessmentHighest decile groupProportional hazards analysisTomography myocardial perfusionIndependent prognostic significanceIndependent prognostic valueLarge multinational registryEjection fraction assessmentMyocardial perfusion imagingREFINE SPECT registryAdditional radiation exposureConventional single-photon emissionMACE riskMACE rateMultinational registry
2016
Mitochondrial Reactive Oxygen Species Mediate Cardiac Structural, Functional, and Mitochondrial Consequences of Diet‐Induced Metabolic Heart Disease
Sverdlov AL, Elezaby A, Qin F, Behring JB, Luptak I, Calamaras TD, Siwik DA, Miller EJ, Liesa M, Shirihai OS, Pimentel DR, Cohen RA, Bachschmid MM, Colucci WS. Mitochondrial Reactive Oxygen Species Mediate Cardiac Structural, Functional, and Mitochondrial Consequences of Diet‐Induced Metabolic Heart Disease. Journal Of The American Heart Association 2016, 5: e002555. PMID: 26755553, PMCID: PMC4859372, DOI: 10.1161/jaha.115.002555.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphateAnimalsCatalaseDiet, High-FatDietary SucroseDisease Models, AnimalElectron Transport Complex IElectron Transport Complex IIEnergy MetabolismHypertrophy, Left VentricularMice, Inbred C57BLMice, TransgenicMitochondria, HeartMitochondrial DiseasesMutationOxidation-ReductionOxidative StressProtein Processing, Post-TranslationalReactive Oxygen SpeciesVentricular Dysfunction, LeftVentricular Function, LeftConceptsOxidative posttranslational modificationsMitochondrial reactive oxygen speciesPosttranslational modificationsReactive oxygen speciesMetabolic heart diseaseATP synthesisMitochondrial dysfunctionCardiac mitochondrial proteinsSite-directed mutationsMitochondrial proteinsTransgenic miceWild-type miceComplex IMitochondriaMitochondrial abnormalitiesHigh palmitateOxygen speciesCardiac mitochondriaCys100Mitochondrial consequencesCys103Key mediatorProteinH2O2 productionHigh-fat high-sucrose diet
2015
Partial Liver Kinase B1 (LKB1) Deficiency Promotes Diastolic Dysfunction, De Novo Systolic Dysfunction, Apoptosis, and Mitochondrial Dysfunction With Dietary Metabolic Challenge
Miller EJ, Calamaras T, Elezaby A, Sverdlov A, Qin F, Luptak I, Wang K, Sun X, Vijay A, Croteau D, Bachschmid M, Cohen RA, Walsh K, Colucci WS. Partial Liver Kinase B1 (LKB1) Deficiency Promotes Diastolic Dysfunction, De Novo Systolic Dysfunction, Apoptosis, and Mitochondrial Dysfunction With Dietary Metabolic Challenge. Journal Of The American Heart Association 2015, 5: e002277. PMID: 26722122, PMCID: PMC4859355, DOI: 10.1161/jaha.115.002277.Peer-Reviewed Original ResearchMeSH KeywordsAMP-Activated Protein KinasesAnimalsApoptosisApoptosis Regulatory ProteinsCaspase 3DiastoleDiet, High-FatDietary SucroseDisease Models, AnimalGenetic Predisposition to DiseaseHeterozygoteHypertrophy, Left VentricularMice, KnockoutMitochondria, HeartMyocardiumPhenotypeProtein Serine-Threonine KinasesSignal TransductionSystoleTime FactorsTumor Suppressor Protein p53Tumor Suppressor ProteinsVentricular Dysfunction, LeftVentricular Function, LeftVentricular RemodelingConceptsHigh-sucrose dietSystolic dysfunctionDiastolic dysfunctionLiver kinase B1Metabolic heart diseaseDietary excessHeart diseaseMyocardial hypertrophyDe novo appearanceControl dietRestrictive filling patternSevere diastolic dysfunctionLeft ventricular dilationMitochondrial dysfunctionMetabolic stressWild-type miceHigh-sucrose feedingNovo appearanceP53/PUMAMore hypertrophyDiastolic functionMyocardial dysfunctionVentricular hypertrophyVentricular dilationSevere mitochondrial dysfunction
2012
The Polyphenols Resveratrol and S17834 Prevent the Structural and Functional Sequelae of Diet-Induced Metabolic Heart Disease in Mice
Qin F, Siwik DA, Luptak I, Hou X, Wang L, Higuchi A, Weisbrod RM, Ouchi N, Tu VH, Calamaras TD, Miller EJ, Verbeuren TJ, Walsh K, Cohen RA, Colucci WS. The Polyphenols Resveratrol and S17834 Prevent the Structural and Functional Sequelae of Diet-Induced Metabolic Heart Disease in Mice. Circulation 2012, 125: 1757-1764. PMID: 22388319, PMCID: PMC3354628, DOI: 10.1161/circulationaha.111.067801.Peer-Reviewed Original ResearchConceptsHFHS diet-fed miceDiet-fed miceMetabolic heart diseaseDiastolic dysfunctionLeft ventricular hypertrophyMyocardial oxidative stressVentricular hypertrophyHeart diseaseInterstitial fibrosisPlasma adiponectinInsulin resistanceProgressive left ventricular hypertrophyDiet-induced metabolic syndromeBeneficial effectsOxidative stressHomeostasis model assessmentMale C57BL/6J miceChronic hemodynamic overloadHFHS dietCardiovascular effectsSystolic functionDiabetes mellitusMetabolic syndromeConcomitant treatmentHemodynamic overload