2014
Monitoring Human Babesiosis Emergence through Vector Surveillance New England, USA - Volume 20, Number 2—February 2014 - Emerging Infectious Diseases journal - CDC
Diuk-Wasser MA, Liu Y, Steeves TK, Folsom-O'Keefe C, Dardick KR, Lepore T, Bent SJ, Usmani-Brown S, Telford SR, Fish D, Krause PJ. Monitoring Human Babesiosis Emergence through Vector Surveillance New England, USA - Volume 20, Number 2—February 2014 - Emerging Infectious Diseases journal - CDC. Emerging Infectious Diseases 2014, 20: 225-231. PMID: 24447577, PMCID: PMC3901474, DOI: 10.3201/eid2002.130644.Peer-Reviewed Original ResearchConceptsHuman babesiosisInfectious Diseases journal - CDCProtozoan Babesia microtiDisease-endemic areasTick-borne diseaseBabesiosis-endemic areasSame tick vectorInfection rateInfection ratioTick infection ratesLyme diseaseBabesia microtiHuman casesDiseaseDisease expansionBabesiosisReservoir hostsTick vectorHuman diseasesSurveillanceClose association
1993
The distribution of canine exposure to Borrelia burgdorferi in a Lyme-Disease endemic area.
Falco R, Smith H, Fish D, Mojica B, Bellinger M, Harris H, Hechemy K. The distribution of canine exposure to Borrelia burgdorferi in a Lyme-Disease endemic area. American Journal Of Public Health 1993, 83: 1305-1310. PMID: 8363007, PMCID: PMC1694954, DOI: 10.2105/ajph.83.9.1305.Peer-Reviewed Original ResearchConceptsCanine exposureEnzyme-linked immunosorbentLyme diseaseBorrelia burgdorferiLyme disease endemic areaIntensity of exposureHuman Lyme diseaseDistribution of exposureSeroprevalence ratesBlood samplesEndemic areasEquivocal samplesResident dogsWestchester CountyDiseaseMean numberCausative agentSignificant differencesExposureImmunosorbentDogsHuman riskBurgdorferiSimilar patternClose association