2024
Exploiting blood-based biomarkers to align preclinical models with human traumatic brain injury
Lisi I, Moro F, Mazzone E, Marklund N, Pischiutta F, Kobeissy F, Mao X, Corrigan F, Helmy A, Nasrallah F, Di Pietro V, Ngwenya L, Portela L, Semple B, Schneider A, Diaz Arrastia R, Menon D, Smith D, Wellington C, Loane D, Wang K, Zanier E, Abbasloo E, Agrawal A, Anwer M, Anyaegbu C, Caeyenberghs K, Collins L, Corrigan F, Cowen G, Portela L, Cullen J, D'Alonzo B, Di Pietro V, Keene C, Esser M, Giersztein S, Helmy A, Hoffman S, Iacono D, Jha R, Johnson V, Justus J, Keene C, Lins B, Liebel S, Loane D, Mao X, Marklund N, McCrea M, McGuone D, Mohamed A, Moro F, Mychasiuk R, Nagarajan G, Nasrallah F, Ngum P, Ngwenya L, Oteng R, Parihar A, Phillips J, Pischiutta F, Prakash S, Robba C, Rostami E, Roselli F, Semple B, Shultz S, Smith D, Song H, Stefani M, Stewart W, Verma R, Wang K, Wellington C, Winston B, Zanier E. Exploiting blood-based biomarkers to align preclinical models with human traumatic brain injury. Brain 2024, awae350. PMID: 39514789, DOI: 10.1093/brain/awae350.Peer-Reviewed Original ResearchTraumatic brain injuryPreclinical modelsPreclinical studiesRodent modelsUCH-L1Experience traumatic brain injuriesBrain injuryReal world clinical practiceTranslation of drugsPost-injuryClinically relevant biomarkersPathophysiology of traumatic brain injuryHuman traumatic brain injuryWhite matter lossDose optimizationBlood-based biomarkersMedian quality scoreTreatment initiationTBI studiesTherapeutic decisionsDrug dose optimizationPharmacodynamic responseChronic phaseBlood levelsClinical trials
2023
Backpack-mediated anti-inflammatory macrophage cell therapy for the treatment of traumatic brain injury
Kapate N, Liao R, Sodemann R, Stinson T, Prakash S, Kumbhojkar N, Suja V, Wang L, Flanz M, Rajeev R, Villafuerte D, Shaha S, Janes M, Park K, Dunne M, Golemb B, Hone A, Adebowale K, Clegg J, Slate A, McGuone D, Costine-Bartell B, Mitragotri S. Backpack-mediated anti-inflammatory macrophage cell therapy for the treatment of traumatic brain injury. PNAS Nexus 2023, 3: pgad434. PMID: 38187808, PMCID: PMC10768983, DOI: 10.1093/pnasnexus/pgad434.Peer-Reviewed Original ResearchTraumatic brain injuryBrain injuryAnti-inflammatory interleukin-4Cortical impact (CCI) TBI modelCell therapyAcute clinical managementDysregulated inflammatory responseSecondary brain injuryAnti-inflammatory phenotypeBrain lesion siteImmune cell therapyRole of macrophagesLarge animal modelUnique therapeutic potentialWound-healing phenotypeRampant inflammationProinflammatory biomarkersTBI modelImmunomodulatory effectsInflammation modulationCurrent therapiesMacrophage-based therapiesNeuroprotection mechanismsProinflammatory activationSerum concentrationsA PILOT STUDY: SPATIOTEMPORALLY-RESOLVED MOLECULAR MECHANISMS OF ACUTE IMMUNE AND NEUROMODULATORY RESPONSES TO TRAUMATIC BRAIN INJURY
Mohammed F, Mcguone D, Omay S, Omay Z, Zhou J. A PILOT STUDY: SPATIOTEMPORALLY-RESOLVED MOLECULAR MECHANISMS OF ACUTE IMMUNE AND NEUROMODULATORY RESPONSES TO TRAUMATIC BRAIN INJURY. IBRO Neuroscience Reports 2023, 15: s189-s190. DOI: 10.1016/j.ibneur.2023.08.289.Peer-Reviewed Original Research
2021
A perfect storm: The distribution of tissue damage depends on seizure duration, hemorrhage, and developmental stage in a gyrencephalic, multi-factorial, severe traumatic brain injury model
Costine-Bartell B, Price G, Shen J, McGuone D, Staley K, Duhaime AC. A perfect storm: The distribution of tissue damage depends on seizure duration, hemorrhage, and developmental stage in a gyrencephalic, multi-factorial, severe traumatic brain injury model. Neurobiology Of Disease 2021, 154: 105334. PMID: 33753291, PMCID: PMC8135256, DOI: 10.1016/j.nbd.2021.105334.Peer-Reviewed Original ResearchConceptsTraumatic brain injuryBrain injurySeizure durationHemispheric hypodensitySubarachnoid hemorrhageTissue damageSevere typeTraumatic brain injury modelSevere traumatic brain injuryEffects of seizuresSevere brain injuryFocal subarachnoid hemorrhageBrain injury modelHuman infantsPotential therapeutic targetLarge animal modelGray matter regionsPattern of damageMultifactorial injuryNeurologic scoresCortical impactSham injurySeizure inductionIntensive careSubdural hematoma
2016
Neuroblast Distribution after Cortical Impact Is Influenced by White Matter Injury in the Immature Gyrencephalic Brain
Taylor SR, Smith CM, Keeley KL, McGuone D, Dodge CP, Duhaime AC, Costine BA. Neuroblast Distribution after Cortical Impact Is Influenced by White Matter Injury in the Immature Gyrencephalic Brain. Frontiers In Neuroscience 2016, 10: 387. PMID: 27601978, PMCID: PMC4994423, DOI: 10.3389/fnins.2016.00387.Peer-Reviewed Original ResearchTraumatic brain injuryWhite matter injuryCortical impactSubventricular zoneWhite matterGyrencephalic brainBrain regionsInjury sitePostnatal populationGray matterPostnatal day 7Age-dependent increaseNumber of neuroblastsCortical contusionNeurogenic responseCortical injuryMajor white matterSham surgeryPND 14PND 5Potential complicationsBrain injuryPopulation of neuroblastsDay 7Chronic effects
2015
The Subventricular Zone in the Immature Piglet Brain: Anatomy and Exodus of Neuroblasts into White Matter after Traumatic Brain Injury
Costine BA, Missios S, Taylor SR, McGuone D, Smith CM, Dodge CP, Harris BT, Duhaime AC. The Subventricular Zone in the Immature Piglet Brain: Anatomy and Exodus of Neuroblasts into White Matter after Traumatic Brain Injury. Developmental Neuroscience 2015, 37: 115-130. PMID: 25678047, PMCID: PMC4406780, DOI: 10.1159/000369091.Peer-Reviewed Original ResearchConceptsTraumatic brain injurySubventricular zoneWhite matterWhite matter tractsNumber of neuroblastsPostnatal neurogenesisBrain injuryEffects of TBICortical impact modelPostnatal day 14Human infantsGyral white matterNeurogenic precursor cellsYounger age groupsMonths of ageSVZ areaPND 7Contralateral hemisphereGyrencephalic brainGyrencephalic speciesPiglet brainLesion siteLarge lesionsLesion sizeDay 14