2017
Immature Lymphocytes Inhibit Rag1 and Rag2 Transcription and V(D)J Recombination in Response to DNA Double-Strand Breaks
Fisher MR, Rivera-Reyes A, Bloch NB, Schatz DG, Bassing CH. Immature Lymphocytes Inhibit Rag1 and Rag2 Transcription and V(D)J Recombination in Response to DNA Double-Strand Breaks. The Journal Of Immunology 2017, 198: 2943-2956. PMID: 28213501, PMCID: PMC5360515, DOI: 10.4049/jimmunol.1601639.Peer-Reviewed Original ResearchConceptsDNA double-strand breaksDNA damage responseRAG1/RAG2Double-strand breaksRAG DNA double-strand breaksMultiple genomic locationsTranscription of genesNF-κB transcription factorsDSB responseGenomic integrityGenomic locationATM kinaseTranscriptional repressionRAG cleavageCellular functionsDamage responseLocus recombinationMammalian cellsRAG1 proteinTranscription factorsModulator proteinRAG expressionAtaxia telangiectasiaTranscriptional inhibitionDevelopmental stages
2015
Mechanisms of clonal evolution in childhood acute lymphoblastic leukemia
Swaminathan S, Klemm L, Park E, Papaemmanuil E, Ford A, Kweon SM, Trageser D, Hasselfeld B, Henke N, Mooster J, Geng H, Schwarz K, Kogan SC, Casellas R, Schatz DG, Lieber MR, Greaves MF, Müschen M. Mechanisms of clonal evolution in childhood acute lymphoblastic leukemia. Nature Immunology 2015, 16: 766-774. PMID: 25985233, PMCID: PMC4475638, DOI: 10.1038/ni.3160.Peer-Reviewed Original ResearchMeSH KeywordsAdolescentAnimalsAntibody DiversityB-LymphocytesChildChild, PreschoolClonal EvolutionCytidine DeaminaseDNA-Binding ProteinsFemaleFlow CytometryHomeodomain ProteinsHumansImmunoblottingInfantMaleMice, Inbred NODMice, KnockoutMice, SCIDMice, TransgenicMicroscopy, FluorescencePrecursor Cell Lymphoblastic Leukemia-LymphomaPrecursor Cells, B-LymphoidReverse Transcriptase Polymerase Chain ReactionTumor Cells, Cultured
2013
Peripheral subnuclear positioning suppresses Tcrb recombination and segregates Tcrb alleles from RAG2
Chan EA, Teng G, Corbett E, Choudhury KR, Bassing CH, Schatz DG, Krangel MS. Peripheral subnuclear positioning suppresses Tcrb recombination and segregates Tcrb alleles from RAG2. Proceedings Of The National Academy Of Sciences Of The United States Of America 2013, 110: e4628-e4637. PMID: 24218622, PMCID: PMC3845165, DOI: 10.1073/pnas.1310846110.Peer-Reviewed Original ResearchConceptsTcrb allelesNuclear peripheryNuclear laminaDNA repair protein 53BP1RNA polymerase IIGene 2 proteinHistone H3K4 trimethylationPericentromeric heterochromatinPolymerase IIH3K4 trimethylationRAG proteinsProtein 53BP1Subnuclear distributionRecombination eventsAllelic exclusionDouble-negative thymocytesT-cell receptor βMultiple Transcription Factor Binding Sites Predict AID Targeting in Non-Ig Genes
Duke JL, Liu M, Yaari G, Khalil AM, Tomayko MM, Shlomchik MJ, Schatz DG, Kleinstein SH. Multiple Transcription Factor Binding Sites Predict AID Targeting in Non-Ig Genes. The Journal Of Immunology 2013, 190: 3878-3888. PMID: 23514741, PMCID: PMC3689293, DOI: 10.4049/jimmunol.1202547.Peer-Reviewed Original ResearchConceptsTranscription Factor Binding SitesAID-induced lesionsNon-Ig genesGenome instabilityTranscription factorsAberrant targetingSequence dataCertain genesGenesAID targetingGerminal center B cellsSomatic mutationsLikely targetBinding sitesAID targetsTargetingClassification tree modelMistargetingB cellsLociMechanismTargetMutationsSitesHigher-Order Looping and Nuclear Organization of Tcra Facilitate Targeted RAG Cleavage and Regulated Rearrangement in Recombination Centers
Chaumeil J, Micsinai M, Ntziachristos P, Deriano L, Wang J, Ji Y, Nora EP, Rodesch MJ, Jeddeloh JA, Aifantis I, Kluger Y, Schatz DG, Skok JA. Higher-Order Looping and Nuclear Organization of Tcra Facilitate Targeted RAG Cleavage and Regulated Rearrangement in Recombination Centers. Cell Reports 2013, 3: 359-370. PMID: 23416051, PMCID: PMC3664546, DOI: 10.1016/j.celrep.2013.01.024.Peer-Reviewed Original ResearchMeSH KeywordsAllelesAnimalsAtaxia Telangiectasia Mutated ProteinsCell Cycle ProteinsCell NucleusDNA DamageDNA-Binding ProteinsGenetic LociGenomic InstabilityHistonesHomeodomain ProteinsMiceMice, Inbred C57BLMice, Inbred CBAMice, KnockoutProtein Serine-Threonine KinasesReceptors, Antigen, T-Cell, alpha-betaTumor Suppressor ProteinsV(D)J RecombinationConceptsAntigen receptor lociRegulated rearrangementsGenome stabilityNuclear organizationRAG cleavageRAG recombinaseNuclear accessibilityRAG bindingCellular transformationΑ locusRecombination eventsReceptor locusDiverse arrayCell receptorLociLoop formationTight controlRegulationCleavageFocal bindingGenetic anomaliesBindingKey determinantRearrangementTranscriptionThe Ataxia Telangiectasia mutated kinase controls Igκ allelic exclusion by inhibiting secondary Vκ-to-Jκ rearrangements
Steinel NC, Lee BS, Tubbs AT, Bednarski JJ, Schulte E, Yang-Iott KS, Schatz DG, Sleckman BP, Bassing CH. The Ataxia Telangiectasia mutated kinase controls Igκ allelic exclusion by inhibiting secondary Vκ-to-Jκ rearrangements. Journal Of Experimental Medicine 2013, 210: 233-239. PMID: 23382544, PMCID: PMC3570110, DOI: 10.1084/jem.20121605.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Signal TransducingAllelesAnimalsAtaxia Telangiectasia Mutated ProteinsBase SequenceB-LymphocytesCell Cycle ProteinsDNA Breaks, Double-StrandedDNA-Binding ProteinsGene Rearrangement, B-Lymphocyte, Light ChainHistonesHomeodomain ProteinsImmunoglobulin kappa-ChainsIntracellular Signaling Peptides and ProteinsMiceMice, 129 StrainMice, KnockoutModels, BiologicalProtein Serine-Threonine KinasesRNA, MessengerSignal TransductionTumor Suppressor ProteinsConceptsDNA double-strand breaksRAG DNA double-strand breaksAllelic exclusionIgκ rearrangementAtaxia telangiectasiaProtein kinase kinaseAntigen receptor chainsDouble-strand breaksHistone H2AX phosphorylationFeedback inhibitionATM kinaseIgκ recombinationKinase kinaseDNA-PKConcomitant repressionH2AX phosphorylationRAG endonucleaseReceptor chainsMDC1H2AXKinaseAllelesRecombinationRearrangementTelangiectasia
2012
Dendritic cell–mediated activation-induced cytidine deaminase (AID)–dependent induction of genomic instability in human myeloma
Koduru S, Wong E, Strowig T, Sundaram R, Zhang L, Strout MP, Flavell RA, Schatz DG, Dhodapkar KM, Dhodapkar MV. Dendritic cell–mediated activation-induced cytidine deaminase (AID)–dependent induction of genomic instability in human myeloma. Blood 2012, 119: 2302-2309. PMID: 22234692, PMCID: PMC3311257, DOI: 10.1182/blood-2011-08-376236.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBlotting, WesternCell Line, TumorCell SurvivalCells, CulturedCoculture TechniquesCytidine DeaminaseDendritic CellsDNA Breaks, Double-StrandedFemaleGene Expression Regulation, EnzymologicGene Expression Regulation, NeoplasticGenomic InstabilityHumansInterleukin Receptor Common gamma SubunitMiceMice, Inbred NODMice, KnockoutMice, SCIDMultiple MyelomaNF-kappa BRANK LigandReverse Transcriptase Polymerase Chain ReactionTransplantation, HeterologousTumor Cells, CulturedConceptsInduction of AIDMultiple myelomaTumor microenvironmentTumor cellsReceptor activatorActivation-induced cytidine deaminaseDendritic cell infiltrationCapacity of DCPrimary MM cellsNF-κB/receptor activatorGenetics of tumorsGrowth of tumorsGenomic damageMyeloma cell linesRANKL inhibitionPlasmacytoid DCsIndolent behaviorCell infiltrationMM cellsHuman myelomaCytidine deaminaseMyelomaDNA double-strand breaksGenomic instabilityCell lines
2010
Uracil residues dependent on the deaminase AID in immunoglobulin gene variable and switch regions
Maul RW, Saribasak H, Martomo SA, McClure RL, Yang W, Vaisman A, Gramlich HS, Schatz DG, Woodgate R, Wilson DM, Gearhart PJ. Uracil residues dependent on the deaminase AID in immunoglobulin gene variable and switch regions. Nature Immunology 2010, 12: 70-76. PMID: 21151102, PMCID: PMC3653439, DOI: 10.1038/ni.1970.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntigenic VariationB-LymphocytesCells, CulturedCytidine DeaminaseDNA-(Apurinic or Apyrimidinic Site) LyaseImmunoglobulin Class SwitchingImmunoglobulin Variable RegionInterleukin-4LipopolysaccharidesLymphocyte ActivationMiceMice, Inbred C57BLMice, KnockoutModels, ChemicalSpleenUracilUracil-DNA GlycosidasePromoters, enhancers, and transcription target RAG1 binding during V(D)J recombination
Ji Y, Little AJ, Banerjee JK, Hao B, Oltz EM, Krangel MS, Schatz DG. Promoters, enhancers, and transcription target RAG1 binding during V(D)J recombination. Journal Of Experimental Medicine 2010, 207: 2809-2816. PMID: 21115692, PMCID: PMC3005232, DOI: 10.1084/jem.20101136.Peer-Reviewed Original ResearchMeSH KeywordsAcetylationAnimalsBinding, CompetitiveChromatin ImmunoprecipitationDNAEnhancer Elements, GeneticFemaleGene RearrangementGenes, ImmunoglobulinGenotypeHistonesHMGB1 ProteinHomeodomain ProteinsMaleMiceMice, Inbred C57BLMice, KnockoutPromoter Regions, GeneticProtein BindingReceptors, Antigen, T-Cell, alpha-betaRecombination, GeneticTranscription, GeneticVDJ RecombinasesSin1-mTORC2 Suppresses rag and il7r Gene Expression through Akt2 in B Cells
Lazorchak AS, Liu D, Facchinetti V, Di Lorenzo A, Sessa WC, Schatz DG, Su B. Sin1-mTORC2 Suppresses rag and il7r Gene Expression through Akt2 in B Cells. Molecular Cell 2010, 39: 433-443. PMID: 20705244, PMCID: PMC2957800, DOI: 10.1016/j.molcel.2010.07.031.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Signal TransducingAnimalsB-LymphocytesCell Line, TransformedDNA-Binding ProteinsForkhead Box Protein O1Forkhead Transcription FactorsGene Expression RegulationGene Rearrangement, B-LymphocyteHomeodomain ProteinsMiceMice, KnockoutPhosphatidylinositol 3-KinasesProto-Oncogene Proteins c-aktReceptors, Interleukin-7Signal TransductionTOR Serine-Threonine KinasesTranscription FactorsConceptsB cell developmentGene expressionCell developmentRAG gene expressionMTOR complex 2FOXO1 transcriptional activityPI3K signalingMTOR inhibitor rapamycinTranscriptional activityKey regulatorB cellsMolecular mechanismsInhibitor rapamycinK signalingCell survivalFoxO1 phosphorylationMammalian targetRecombinase activityPI3KIL-7 receptorAkt2SignalingRapamycinExpressionCells
2009
RAG-1 and ATM coordinate monoallelic recombination and nuclear positioning of immunoglobulin loci
Hewitt SL, Yin B, Ji Y, Chaumeil J, Marszalek K, Tenthorey J, Salvagiotto G, Steinel N, Ramsey LB, Ghysdael J, Farrar MA, Sleckman BP, Schatz DG, Busslinger M, Bassing CH, Skok JA. RAG-1 and ATM coordinate monoallelic recombination and nuclear positioning of immunoglobulin loci. Nature Immunology 2009, 10: 655-664. PMID: 19448632, PMCID: PMC2693356, DOI: 10.1038/ni.1735.Peer-Reviewed Original ResearchAllelesAnimalsAtaxia Telangiectasia Mutated ProteinsB-LymphocytesCell Cycle ProteinsCells, CulturedDNA BreaksDNA-Binding ProteinsGene RearrangementHomeodomain ProteinsImmunoglobulinsMiceMice, Inbred C57BLMice, KnockoutProtein Serine-Threonine KinasesRecombination, GeneticTumor Suppressor ProteinsVDJ Recombinases
2008
Ebf1-dependent control of the osteoblast and adipocyte lineages
Hesslein DG, Fretz JA, Xi Y, Nelson T, Zhou S, Lorenzo JA, Schatz DG, Horowitz MC. Ebf1-dependent control of the osteoblast and adipocyte lineages. Bone 2008, 44: 537-546. PMID: 19130908, PMCID: PMC2657874, DOI: 10.1016/j.bone.2008.11.021.Peer-Reviewed Original ResearchConceptsNumber of osteoclastsBone formation parametersBone formation rateAdipocyte lineageBone marrow cellsOlfactory sensory neuronsSerum osteocalcinOsteoid volumeSensory neuronsAdipocyte numberBone marrowOsteoclast developmentMutant miceMarrow cellsMiceSubcutaneous sitesBone formationAdipocyte developmentStriking increaseDecreased depositionTranscription factorsOsteoblastsB cell fate specificationEBF1Adiposity
2006
Roles of the Ig κ Light Chain Intronic and 3′ Enhancers in Igk Somatic Hypermutation
Inlay MA, Gao HH, Odegard VH, Lin T, Schatz DG, Xu Y. Roles of the Ig κ Light Chain Intronic and 3′ Enhancers in Igk Somatic Hypermutation. The Journal Of Immunology 2006, 177: 1146-1151. PMID: 16818772, DOI: 10.4049/jimmunol.177.2.1146.Peer-Reviewed Original ResearchMeSH Keywords3' Untranslated RegionsAnimalsB-LymphocytesCells, CulturedDown-RegulationEnhancer Elements, GeneticGene DeletionGene Expression RegulationGerminal CenterImmunoglobulin kappa-ChainsIntronsLymphocyte ActivationMiceMice, KnockoutMice, TransgenicRNA, MessengerSomatic Hypermutation, ImmunoglobulinSpleenOrigins of peripheral B cells in IL-7 receptor-deficient mice
Hesslein DG, Yang SY, Schatz DG. Origins of peripheral B cells in IL-7 receptor-deficient mice. Molecular Immunology 2006, 43: 326-334. PMID: 16310046, DOI: 10.1016/j.molimm.2005.02.010.Peer-Reviewed Original ResearchConceptsIL-7Ralpha-deficient miceB cell populationsB cellsBone marrowSplenic B cellsIL-7RalphaCell percentageIL-7 receptor-deficient miceCell populationsReceptor-deficient micePeripheral B cellsSplenic B cell populationSpleens of adultBone marrow-derived B cellsReceptor alpha geneEarly lymphoid differentiationAdult bone marrowSplenic populationsPeripheral BNeonatal developmentB cell developmentFollicular cellsMarrowMiceFetal liver
2004
Pax5-Deficient Mice Exhibit Early Onset Osteopenia with Increased Osteoclast Progenitors
Horowitz MC, Xi Y, Pflugh DL, Hesslein DG, Schatz DG, Lorenzo JA, Bothwell AL. Pax5-Deficient Mice Exhibit Early Onset Osteopenia with Increased Osteoclast Progenitors. The Journal Of Immunology 2004, 173: 6583-6591. PMID: 15557148, DOI: 10.4049/jimmunol.173.11.6583.Peer-Reviewed Original ResearchConceptsNumber of osteoclastsSpleen cellsB cellsOsteoclast developmentB cell-deficient miceCell-deficient miceControl spleen cellsB lymphocyte lineage cellsBone marrow cellsB-cell lineagePro-B cell stageMonocyte phenotypeBone massOsteoclast precursorsMice exhibitOsteoclast progenitorsMarrow cellsGrowth factorMiceOsteoclastsLineage cellsOsteopeniaCell lineagesCellsAdherent cellsStaggered AID‐dependent DNA double strand breaks are the predominant DNA lesions targeted to Sµ in Ig class switch recombination
Rush JS, Fugmann SD, Schatz DG. Staggered AID‐dependent DNA double strand breaks are the predominant DNA lesions targeted to Sµ in Ig class switch recombination. International Immunology 2004, 16: 549-557. PMID: 15039385, DOI: 10.1093/intimm/dxh057.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntibodies, MonoclonalBlotting, SouthernB-LymphocytesCell DivisionCytidine DeaminaseDeoxyribonucleases, Type II Site-SpecificDNADNA DamageDNA PrimersFlow CytometryGene ExpressionImmunoglobulin Class SwitchingImmunoglobulin DImmunoglobulin GImmunoglobulin Switch RegionInterleukin-4LipopolysaccharidesMiceMice, Inbred C57BLMice, KnockoutPlasmidsPolymerase Chain ReactionRecombination, GeneticConceptsClass switch recombinationDNA double-strand breaksPredominant DNA lesionsDouble-strand breaksActivation-induced cytidine deaminaseDNA lesionsSwitch recombinationAID-dependent DNA double-strand breaksStrand breaksIg class switch recombinationLigation-mediated PCRS mu regionCellular regulationKinetics of inductionMolecular detailsMurine B cellsDNA DSBsStaggered breaksCytidine deaminaseDSBsMu regionMinor speciesB cellsS muEffector propertiesPartial reconstitution of V(D)J rearrangement and lymphocyte development in RAG-deficient mice expressing inducible, tetracycline-regulated RAG transgenes
Shockett PE, Zhou S, Hong X, Schatz DG. Partial reconstitution of V(D)J rearrangement and lymphocyte development in RAG-deficient mice expressing inducible, tetracycline-regulated RAG transgenes. Molecular Immunology 2004, 40: 813-829. PMID: 14687938, DOI: 10.1016/j.molimm.2003.09.009.Peer-Reviewed Original ResearchConceptsPeripheral lymphoid organsIGK locusInducible gene expressionLymph nodesCell reconstitutionLymphoid organsTransgenic miceTRB locusTRD locusT-cell reconstitutionB-cell reconstitutionMammalian cellsRAG-deficient miceSignal endsTra locusRecombination signalsInducible activationGene expressionTCR beta chainFunctional expressionLymphocyte developmentLociRAG2 mRNALymphocyte reconstitutionTransgeneUp-Regulation of Hlx in Immature Th Cells Induces IFN-γ Expression
Zheng WP, Zhao Q, Zhao X, Li B, Hubank M, Schatz DG, Flavell RA. Up-Regulation of Hlx in Immature Th Cells Induces IFN-γ Expression. The Journal Of Immunology 2004, 172: 114-122. PMID: 14688316, DOI: 10.4049/jimmunol.172.1.114.Peer-Reviewed Original ResearchMeSH KeywordsAdjuvants, ImmunologicAdoptive TransferAnimalsCD4-Positive T-LymphocytesCell DifferentiationCells, CulturedHemocyaninsHomeodomain ProteinsInjections, IntravenousInjections, SubcutaneousInterferon-gammaInterphaseMiceMice, Inbred C57BLMice, KnockoutMice, TransgenicTh1 CellsT-Lymphocytes, Helper-InducerTranscription FactorsUp-RegulationConceptsCD4 T cellsTransgenic CD4 T cellsTh2-polarizing conditionsTh1 cell differentiationTh cellsT cellsTh1 cellsIFN-gammaKeyhole limpet hemocyanin immunizationNormal CD4 T cellsTime pointsIntracellular cytokine stainingIFN-γ expressionIFN-gamma expressionEarly time pointsCytokine stainingTh2 cellsNaive precursorsCell differentiationSpecific time pointsThymocyte populationTransgenic miceMarked reductionAberrant expressionRetroviral infection
2003
Pax5 is required for recombination of transcribed, acetylated, 5′ IgH V gene segments
Hesslein DG, Pflugh DL, Chowdhury D, Bothwell AL, Sen R, Schatz DG. Pax5 is required for recombination of transcribed, acetylated, 5′ IgH V gene segments. Genes & Development 2003, 17: 37-42. PMID: 12514097, PMCID: PMC195966, DOI: 10.1101/gad.1031403.Peer-Reviewed Original ResearchAcetylationAllelesAnimalsB-LymphocytesChromatinDNA NucleotidyltransferasesDNA-Binding ProteinsGene Rearrangement, B-Lymphocyte, Heavy ChainGenes, ImmunoglobulinGenes, RAG-1HistonesHomeodomain ProteinsImmunoglobulin Heavy ChainsImmunoglobulin Variable RegionMiceMice, Inbred C57BLMice, KnockoutPAX5 Transcription FactorTranscription FactorsTranscription, GeneticVDJ Recombinases
2002
The Activation-induced Deaminase Functions in a Postcleavage Step of the Somatic Hypermutation Process
Papavasiliou FN, Schatz DG. The Activation-induced Deaminase Functions in a Postcleavage Step of the Somatic Hypermutation Process. Journal Of Experimental Medicine 2002, 195: 1193-1198. PMID: 11994424, PMCID: PMC2193708, DOI: 10.1084/jem.20011858.Peer-Reviewed Original ResearchConceptsActivation-induced cytidine deaminaseClass switch recombinationSomatic hypermutationDNA lesionsDownstream constant region genesCytidine deaminase motifDominant-negative formConstant region genesInitial DNA lesionsSomatic hypermutation processHeavy chain constant regionIg genesNegative formImmunoglobulin genesChain constant regionTarget sequencePoint mutationsCytidine deaminaseHypermutation processGenesAID functionRegion genesMechanistic overlapVariable regionsConstant region