2024
Epidermal Growth Factor Receptor Regulates Beclin-1 in Hyperoxia-Induced Lung Injury
Harris Z, Sun Y, Korde A, Hu B, Sharma L, Manning E, Joerns J, Clark B, Stanley G, Shin H, Placek L, Unutmaz D, Chun H, Sauler M, Rajagopalan G, Zhang X, Wang H, Kang M, Koff J. Epidermal Growth Factor Receptor Regulates Beclin-1 in Hyperoxia-Induced Lung Injury. 2024, a6841-a6841. DOI: 10.1164/ajrccm-conference.2024.209.1_meetingabstracts.a6841.Peer-Reviewed Original ResearchIntranasal neomycin evokes broad-spectrum antiviral immunity in the upper respiratory tract
Mao T, Kim J, Peña-Hernández M, Valle G, Moriyama M, Luyten S, Ott I, Gomez-Calvo M, Gehlhausen J, Baker E, Israelow B, Slade M, Sharma L, Liu W, Ryu C, Korde A, Lee C, Monteiro V, Lucas C, Dong H, Yang Y, Initiative Y, Gopinath S, Wilen C, Palm N, Dela Cruz C, Iwasaki A, Vogels C, Hahn A, Chen N, Breban M, Koch T, Chaguza C, Tikhonova I, Castaldi C, Mane S, De Kumar B, Ferguson D, Kerantzas N, Peaper D, Landry M, Schulz W, Grubaugh N. Intranasal neomycin evokes broad-spectrum antiviral immunity in the upper respiratory tract. Proceedings Of The National Academy Of Sciences Of The United States Of America 2024, 121: e2319566121. PMID: 38648490, PMCID: PMC11067057, DOI: 10.1073/pnas.2319566121.Peer-Reviewed Original ResearchConceptsInterferon-stimulated genesRespiratory infectionsStrains of influenza A virusTreatment of respiratory viral infectionsRespiratory virus infectionsInfluenza A virusMouse model of COVID-19Respiratory viral infectionsNeomycin treatmentExpression of interferon-stimulated genesUpper respiratory infectionInterferon-stimulated gene expressionLower respiratory infectionsBroad spectrum of diseasesAdministration of neomycinRespiratory viral diseasesDisease to patientsUpper respiratory tractIntranasal deliveryCongenic miceIntranasal applicationNasal mucosaSevere acute respiratory syndrome coronavirus 2Acute respiratory syndrome coronavirus 2A virus
2022
Platelet-derived TLT-1 promotes tumor progression by suppressing CD8+ T cells
Tyagi T, Jain K, Yarovinsky TO, Chiorazzi M, Du J, Castro C, Griffin J, Korde A, Martin KA, Takyar SS, Flavell RA, Patel AA, Hwa J. Platelet-derived TLT-1 promotes tumor progression by suppressing CD8+ T cells. Journal Of Experimental Medicine 2022, 220: e20212218. PMID: 36305874, PMCID: PMC9814191, DOI: 10.1084/jem.20212218.Peer-Reviewed Original ResearchConceptsCD8 T cellsT cellsTLT-1Non-small cell lung cancer patientsCell lung cancer patientsTREM-like transcript-1Tumor immunosuppressive mechanismsT cell suppressionLung cancer patientsPatient T cellsNF-κB pathwayPatient-derived tumorsDistinct activation phenotypesNSCLC patientsImmunosuppressive mechanismsSyngeneic tumorsHumanized miceImmunoregulatory rolePrognostic significanceImmunocompetent miceCancer patientsCell suppressionActivation phenotypeReduced tumorTumor growthCoronavirus Lung Infection Impairs Host Immunity against Secondary Bacterial Infection by Promoting Lysosomal Dysfunction.
Peng X, Kim J, Gupta G, Agaronyan K, Mankowski MC, Korde A, Takyar SS, Shin HJ, Habet V, Voth S, Audia JP, Chang D, Liu X, Wang L, Cai Y, Tian X, Ishibe S, Kang MJ, Compton S, Wilen CB, Dela Cruz CS, Sharma L. Coronavirus Lung Infection Impairs Host Immunity against Secondary Bacterial Infection by Promoting Lysosomal Dysfunction. The Journal Of Immunology 2022, 209: 1314-1322. PMID: 36165196, PMCID: PMC9523490, DOI: 10.4049/jimmunol.2200198.Peer-Reviewed Original ResearchConceptsSARS-CoV-2Bacterial infectionsMouse modelCoronavirus infectionLysosomal dysfunctionMajor health care challengeLung immune cellsLung tissue damageSecondary bacterial infectionImpair host immunityIL-1β releaseHealth care challengesCell deathPyroptotic cell deathBacterial killing abilityIL-1βBacterial clearanceImmune cellsSecondary infectionHost immunityAlveolar macrophagesTissue damageΒ-coronavirusStructural cellsCare challengesEpidermal Growth Factor Receptor Inhibition Is Protective in Hyperoxia‐Induced Lung Injury
Harris ZM, Sun Y, Joerns J, Clark B, Hu B, Korde A, Sharma L, Shin HJ, Manning EP, Placek L, Unutmaz D, Stanley G, Chun H, Sauler M, Rajagopalan G, Zhang X, Kang MJ, Koff JL. Epidermal Growth Factor Receptor Inhibition Is Protective in Hyperoxia‐Induced Lung Injury. Oxidative Medicine And Cellular Longevity 2022, 2022: 9518592. PMID: 36193076, PMCID: PMC9526641, DOI: 10.1155/2022/9518592.Peer-Reviewed Original ResearchConceptsAcute lung injuryEpidermal growth factor receptorAlveolar epithelial cellsLung injurySevere hyperoxiaEGFR inhibitionEpithelial cellsHyperoxia-Induced Lung InjuryRole of EGFRMurine alveolar epithelial cellsGrowth factor receptor inhibitionWorse clinical outcomesEpidermal growth factor receptor inhibitionHuman alveolar epithelial cellsWild-type littermatesPoly (ADP-ribose) polymeraseTerminal dUTP nickGrowth factor receptorClinical outcomesImproved survivalReceptor inhibitionLung repairProtective roleComplex roleEGFR deletionEndothelial Thrombopoietin Receptor Controls Eosinophil Trafficking in Asthma and Chronic Rhinosinusitis
Korde A, Haslip M, Ahangari F, Pober J, Chupp G, Manes P, Gonzalez A, Takyar S. Endothelial Thrombopoietin Receptor Controls Eosinophil Trafficking in Asthma and Chronic Rhinosinusitis. 2022, a5684-a5684. DOI: 10.1164/ajrccm-conference.2022.205.1_meetingabstracts.a5684.Peer-Reviewed Original ResearchMicroRNA-1 Regulates an Endothelial Gene Network Controlling Permeability and Alveolar Cell Death
Korde A, Haslip M, Chioccioli M, Khan A, Mehta S, Pober J, Pierce R, Takyar S. MicroRNA-1 Regulates an Endothelial Gene Network Controlling Permeability and Alveolar Cell Death. 2022, a5771-a5771. DOI: 10.1164/ajrccm-conference.2022.205.1_meetingabstracts.a5771.Peer-Reviewed Original Research
2017
Lung Endothelial MicroRNA-1 Regulates Tumor Growth and Angiogenesis
Korde A, Jin L, Zhang JG, Ramaswamy A, Hu B, Kolahian S, Guardela BJ, Herazo-Maya J, Siegfried JM, Stabile L, Pisani MA, Herbst RS, Kaminski N, Elias JA, Puchalski JT, Takyar SS. Lung Endothelial MicroRNA-1 Regulates Tumor Growth and Angiogenesis. American Journal Of Respiratory And Critical Care Medicine 2017, 196: 1443-1455. PMID: 28853613, PMCID: PMC5736970, DOI: 10.1164/rccm.201610-2157oc.Peer-Reviewed Original ResearchConceptsNon-small cell lung cancerMiR-1 levelsLewis lung carcinoma xenograftsLung carcinoma xenograftsTransgenic miceEndothelial cellsNSCLC tumorsCarcinoma xenograftsLung endotheliumMiR-1Tumor growthTumor progressionVascular endothelial cadherin promoterMicroRNA-1Cohort of patientsTumor-bearing lungsCell lung cancerVascular endothelial growth factorCancer-free tissuesEndothelial growth factorInducible transgenic miceMiR-1 overexpressionKP miceOverall survivalTumor burden
2014
Compromised RNA polymerase III complex assembly leads to local alterations of intergenic RNA polymerase II transcription in Saccharomyces cerevisiae
Wang Q, Nowak C, Korde A, Oh D, Dassanayake M, Donze D. Compromised RNA polymerase III complex assembly leads to local alterations of intergenic RNA polymerase II transcription in Saccharomyces cerevisiae. BMC Biology 2014, 12: 89. PMID: 25348158, PMCID: PMC4228148, DOI: 10.1186/s12915-014-0089-x.Peer-Reviewed Original ResearchMeSH KeywordsBinding SitesChromatinChromosome MappingDNA, IntergenicGene Expression Regulation, FungalGenetic LociGenome, FungalGenotypeOpen Reading FramesPromoter Regions, GeneticRNA Polymerase IIRNA Polymerase IIISaccharomyces cerevisiaeSequence Analysis, RNATranscription Factors, TFIIITranscription Initiation SiteTranscriptomeConceptsPol III complexesPol II transcriptionAdjacent genesIntergenic regionComplex assemblyRNA polymerase III complexRNA polymerase II transcriptionMicroarray studiesTranscription factor TFIIICSynthetic biology effortsPolymerase II transcriptionRNA polymerase IITranscriptional start sitePol II promotersChromatin processesYeast genomePolymerase IIFactor mutantsStart sitePol IIIRNA sequencingETC sitesTranslational levelUpstream transcriptsWild typeRNA polymerase III transcription factor complexes block transcriptional interference from intergenic RNA polymerase II progression in Saccharomyces cerevisiae (561.3)
Korde A, Rosselot J, Donze D. RNA polymerase III transcription factor complexes block transcriptional interference from intergenic RNA polymerase II progression in Saccharomyces cerevisiae (561.3). The FASEB Journal 2014, 28 DOI: 10.1096/fasebj.28.1_supplement.561.3.Peer-Reviewed Original ResearchPol III transcription complexesTranscription complexTransfer RNATranscriptional interferenceRNA polymerase II progressionRNA polymerase II transcriptionRNA polymerase III transcriptionPol III complexesPolymerase II transcriptionTranscription factor complexPolymerase III transcriptionChromosome functionPervasive transcriptionTFIIIB complexChromatin immunoprecipitationGene upstreamFactor complexEnzyme complexTranscriptionGenesSequential assemblyRecent discoveryYeastComplexesRecent studiesIntergenic Transcriptional Interference Is Blocked by RNA Polymerase III Transcription Factor TFIIIB in Saccharomyces cerevisiae
Korde A, Rosselot J, Donze D. Intergenic Transcriptional Interference Is Blocked by RNA Polymerase III Transcription Factor TFIIIB in Saccharomyces cerevisiae. Genetics 2014, 196: 427-438. PMID: 24336746, PMCID: PMC3914616, DOI: 10.1534/genetics.113.160093.Peer-Reviewed Original ResearchConceptsRNA polymerase III complexTranscriptional interferenceRNA polymerase III transcription factor TFIIIBRNA polymerase II transcriptionAdditional nuclear functionsPolymerase II transcriptionEukaryotic RNA polymerase IIITranscription factor TFIIIBNitrogen starvation conditionsRNA polymerase IIIPervasive transcriptionTRNA genesChromatin boundariesNuclear functionsTFIIIB complexTranscription unitGene upstreamTransfer RNAReadthrough transcriptsRibosomal RNANucleosome phasingPolymerase IIIStarvation conditionsGene productsRNA moleculesCompromised RNA polymerase III complex assembly leads to local alterations of intergenic RNA polymerase II transcription in Saccharomyces cerevisiae
Wang Q, Nowak C, Korde A, Oh D, Dassanayake M, Donze D. Compromised RNA polymerase III complex assembly leads to local alterations of intergenic RNA polymerase II transcription in Saccharomyces cerevisiae. BMC Biology 2014, 12: 89. DOI: 10.1186/preaccept-1938943002141624.Peer-Reviewed Original Research
2013
Extra‐transcriptional effects of RNA polymerase III transcription complex on neighboring RNA polymerase II transcribing genes in Saccharomyces cerevisiae
Korde A, Rosselot J, Donze D. Extra‐transcriptional effects of RNA polymerase III transcription complex on neighboring RNA polymerase II transcribing genes in Saccharomyces cerevisiae. The FASEB Journal 2013, 27: 980.8-980.8. DOI: 10.1096/fasebj.27.1_supplement.980.8.Peer-Reviewed Original ResearchChromatin proteinsTranscription complexRNA polymerase III transcription complexesPol III transcription complexesTransfer RNA genesPol III machineryPol III complexesPol II progressionRNA polymerase IIRNA polymerase IIINon-coding RNAsChromosome functionIntergenic transcriptionIntergenic transcriptsChromatin boundariesRNA genesInsulator functionPolymerase IIReadthrough transcriptsPolymerase IIIReduced translationRegulatory elementsS. cerevisiaeAtg31RNA analysis