2016
Chapter 29 Regulation of Striatal Signaling by Protein Phosphatases
Girault J, Greengard P, Nairn A. Chapter 29 Regulation of Striatal Signaling by Protein Phosphatases. Techniques In The Behavioral And Neural Sciences 2016, 24: 583-607. DOI: 10.1016/b978-0-12-802206-1.00029-5.Peer-Reviewed Original ResearchSerine/threonine proteinProtein phosphatase regulationRegulation of proteinsPhosphatase regulationProtein phosphataseARPP-16Regulatory phosphoproteinsIntracellular signalingIntercellular communicationMedium spiny projection neuronsKey roleDARPP-32Major classesGenesRegulationSignalingProteinStriatal medium spiny projection neuronsSpecific setStriatal signalingPhosphoproteinRoleModulatory rolePhosphataseNeurons
2010
Chapter 79 The EF2K/MHCK/TRPM7 Family of Atypical Protein Kinases
Wiseman S, Wei F, Nairn A. Chapter 79 The EF2K/MHCK/TRPM7 Family of Atypical Protein Kinases. 2010, 587-599. DOI: 10.1016/b978-0-12-374145-5.00079-6.Peer-Reviewed Original ResearchEF2KProtein synthesisElongation stepAtypical protein kinaseAtypical kinase familySpecific subcellular compartmentsCellular stress pathwaysLocal protein synthesisNeuronal growth conesActivity-dependent regulationKinase familySubcellular compartmentsCatalytic domainKinase domainProtein kinaseEnzymatic functionSecond messengerN-terminalK activityPhosphorylationStress pathwaysGrowth conesParticular Ca2EF2Regulation
2003
Adenylyl cyclase-dependent form of chemical long-term potentiation triggers translational regulation at the elongation step
Chotiner J, Khorasani H, Nairn A, O’Dell T, Watson J. Adenylyl cyclase-dependent form of chemical long-term potentiation triggers translational regulation at the elongation step. Neuroscience 2003, 116: 743-752. PMID: 12573716, DOI: 10.1016/s0306-4522(02)00797-2.Peer-Reviewed Original ResearchConceptsEukaryotic elongation factor 2Elongation factor 2Elongation stepProtein synthesisTotal protein synthesisChemical long-term potentiationMessenger RNALong-term potentiationN-methyl-D-aspartate (NMDA) receptor-dependent formInhibition of translationFactor 2Long-term potentiation inductionTranslational regulationProtein ArcAdenylyl cyclase signalingAdenylyl cyclase activationSynaptic activityCyclase signalingN-methyl-D-aspartate (NMDA) receptor activationPersistent maintenanceReceptor-dependent formHippocampal long-term potentiationPhosphorylationRegulationRNA
2001
Protein phosphatase 1 regulation by inhibitors and targeting subunits
Watanabe T, Huang H, Horiuchi A, da Cruze Silva E, Hsieh-Wilson L, Allen P, Shenolikar S, Greengard P, Nairn A. Protein phosphatase 1 regulation by inhibitors and targeting subunits. Proceedings Of The National Academy Of Sciences Of The United States Of America 2001, 98: 3080-3085. PMID: 11248035, PMCID: PMC30610, DOI: 10.1073/pnas.051003898.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsCell LineChromosomal Proteins, Non-HistoneDNA-Binding ProteinsDopamine and cAMP-Regulated Phosphoprotein 32Enzyme InhibitorsGene ExpressionHistone ChaperonesMicrofilament ProteinsMolecular Sequence DataMyelin Basic ProteinNerve Tissue ProteinsPhosphoprotein PhosphatasesPhosphoproteinsProtein Phosphatase 1ProteinsRabbitsRecombinant Fusion ProteinsSpodopteraSubstrate SpecificityTranscription FactorsConceptsProtein phosphatase 1Native protein phosphatase-1PP1 nuclear targeting subunitPhosphotyrosine-containing substratesInhibitor 2Protein phosphatase 1 regulationRecombinant protein phosphatase 1Sf9 insect cellsC-terminal sequencesLoss of interactionTargeting subunitPP1/Phosphatase 1Insect cellsResidues 274Inhibitor proteinRecombinant proteinsProtein inhibitorSubunitsEscherichia coliY272Corresponding regionPhosphorylase a.MutationsRegulation
2000
Regulation of protein phosphatase-1
Aggen J, Nairn A, Chamberlin R. Regulation of protein phosphatase-1. Cell Chemical Biology 2000, 7: r13-r23. PMID: 10662690, DOI: 10.1016/s1074-5521(00)00069-7.Peer-Reviewed Original Research
1999
Regulation of Neurabin I Interaction with Protein Phosphatase 1 by Phosphorylation †
McAvoy T, Allen P, Obaishi H, Nakanishi H, Takai Y, Greengard P, Nairn A, Hemmings H. Regulation of Neurabin I Interaction with Protein Phosphatase 1 by Phosphorylation †. Biochemistry 1999, 38: 12943-12949. PMID: 10504266, DOI: 10.1021/bi991227d.Peer-Reviewed Original ResearchConceptsProtein phosphatase 1Neurabin IPP1 activityPhosphatase 1Two-hybrid interaction analysisActin-binding proteinsCo-immunoprecipitation experimentsMimic phosphorylationSerine 461Phosphorylated residuesGlutathione S-transferaseOverlay assaysFusion proteinSignaling mechanismGamma isoformsCAMP pathwayPhosphorylationS-transferaseProteinTryptic digestPKARegulationHPLC-MS analysisInteraction analysisS461Protein phosphatase 1 modulation of neostriatal AMPA channels: regulation by DARPP–32 and spinophilin
Yan Z, Hsieh–Wilson L, Feng J, Tomizawa K, Allen P, Fienberg A, Nairn A, Greengard P. Protein phosphatase 1 modulation of neostriatal AMPA channels: regulation by DARPP–32 and spinophilin. Nature Neuroscience 1999, 2: 13-17. PMID: 10195174, DOI: 10.1038/4516.Peer-Reviewed Original ResearchConceptsPP-1Protein phosphatase 1DARPP-32Distinct molecular mechanismsPhosphatase 1Molecular mechanismsAMPA receptor-mediated synaptic transmissionPostsynaptic densityAMPA channelsRegulationSynaptic plasticitySpinophilinNeostriatal neuronsPlasticityPhysiological evidenceGlutamate channelsSynaptic transmissionAMPA receptorsPhosphoproteinProteinMechanismBindingActivityModulationCatalytic activity
1996
Amyloid β Peptide Formation in Cell-free Preparations REGULATION BY PROTEIN KINASE C, CALMODULIN, AND CALCINEURIN*
Desdouits F, Buxbaum J, Desdouits-Magnen J, Nairn A, Greengard P. Amyloid β Peptide Formation in Cell-free Preparations REGULATION BY PROTEIN KINASE C, CALMODULIN, AND CALCINEURIN*. Journal Of Biological Chemistry 1996, 271: 24670-24674. PMID: 8798734, DOI: 10.1074/jbc.271.40.24670.Peer-Reviewed Original ResearchConceptsProtein kinase CAction of PKCCell-free systemIntact cellsKinase CProtein phosphatase calcineurinCell-permeant inhibitorStimulation of PKCSpecific peptide inhibitorPhosphatase calcineurinMolecular mechanismsCalcineurinPeptide inhibitorRegulationShort peptidesCalmodulinCellsBeta peptideInhibitorsPeptide formationPeptidesMajor constituentsPronounced inhibitionCyclosporin ASingle substrate
1995
Cystic Fibrosis Transmembrane Conductance Regulator Is Found Within Brain Ventricular Epithelium and Choroid Plexus
Hincke M, Nairn A, Staines W. Cystic Fibrosis Transmembrane Conductance Regulator Is Found Within Brain Ventricular Epithelium and Choroid Plexus. Journal Of Neurochemistry 1995, 64: 1662-1668. PMID: 7534334, DOI: 10.1046/j.1471-4159.1995.64041662.x.Peer-Reviewed Original ResearchConceptsCystic fibrosis transmembrane conductance regulatorFibrosis transmembrane conductance regulatorTransmembrane conductance regulatorConductance regulatorCystic fibrosis gene productBrain Ventricular EpitheliumCyclic AMP-dependent phosphorylationGene productsCFTR proteinFine punctaChloride transportersCl- channelsCyclic AMP-elevating agentsEpendymal functionWestern blottingRegulatorVentricular epitheliumPhosphorylationChoroid plexusProteinTransportersRodent brainPunctaRegulationMicrodissection
1994
Regulation of CFTR channel gating
Gadsby D, Nairn A. Regulation of CFTR channel gating. Trends In Biochemical Sciences 1994, 19: 513-518. PMID: 7531880, DOI: 10.1016/0968-0004(94)90141-4.Peer-Reviewed Original ResearchConceptsChannel gatingCystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channelAMP-dependent protein kinaseCFTR channel gatingReceptor-mediated activationRegulatory domainProtein kinaseATP hydrolysisCFTR channelsCl- channelsEpithelial cellsChannel openingComplex mechanismsCellsRecent advancesKinaseGenesPhosphorylationSerineGatingCFTRMutationsRegulationStemActivationRegulation of CFTR channel gating.
Gadsby D, Hwang T, Baukrowitz T, Nagel G, Horie M, Nairn A. Regulation of CFTR channel gating. The Journal Of Physiological Sciences 1994, 44 Suppl 2: s183-92. PMID: 7752525.Peer-Reviewed Original ResearchConceptsNon-hydrolyzable ATP analog AMP-PNPCystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channelAMP-PNPCFTR channel gatingProtein kinase A (PKA) phosphorylationATP analogue AMP-PNPAnalogue AMP-PNPCFTR's twoA PhosphorylationATP hydrolysisChannel gatingCl- channelsChannel openingNBDRegulationMultiple sitesPhosphorylationCFTROrthovanadateATPGatingDomain
1992
The role of protein phosphatases in synaptic transmission, plasticity and neuronal development
Nairn A, Shenolikar S. The role of protein phosphatases in synaptic transmission, plasticity and neuronal development. Current Opinion In Neurobiology 1992, 2: 296-301. PMID: 1322750, DOI: 10.1016/0959-4388(92)90118-5.Peer-Reviewed Original ResearchConceptsNeuronal developmentSerine/threonineRole of proteinsProtein phosphataseProtein dephosphorylationMolecular cloningTyrosine proteinIon channelsNervous systemPast year significant advancesNeuronal functionNeurotransmitter receptorsSpecific neuronsProteinSelective inhibitorEnzymeYears significant advancesSynaptic transmissionDephosphorylationCloningThreonineRolePhosphataseRegulationPlasticity
1991
Immunocytochemical localization of phosphatase inhibitor‐1 in rat brain
Gustafson E, Girault J, Hemmings H, Nairn A, Greengard P. Immunocytochemical localization of phosphatase inhibitor‐1 in rat brain. The Journal Of Comparative Neurology 1991, 310: 170-188. PMID: 1955581, DOI: 10.1002/cne.903100204.Peer-Reviewed Original ResearchConceptsPhosphatase inhibitor-1Inhibitor-1Intracellular signal transductionPhosphatase 1Protein phosphorylationSignal transductionWidespread roleNumerous immunoreactive cell bodiesSuprachiasmatic nucleusCyclic AMPImmunocytochemical localizationUse of immunocytochemistrySubstantial populationNeurotransmitter regulationDephosphorylationLocalizationNucleusTransductionImmunocytochemical studyCell bodiesPhosphorylationProteinNeuronsRegulationHigh levels
1989
Chloride conductance regulated by cyclic AMP-dependent protein kinase in cardiac myocytes
Bahinski A, Nairn A, Greengard P, Gadsby D. Chloride conductance regulated by cyclic AMP-dependent protein kinase in cardiac myocytes. Nature 1989, 340: 718-721. PMID: 2475783, DOI: 10.1038/340718a0.Peer-Reviewed Original ResearchConceptsCyclic AMP-dependent protein kinaseAMP-dependent protein kinaseProtein kinaseChloride ion currentCatalytic subunitRegulatory proteinsKinase activationIon channelsKinaseChloride conductanceCalcium entrySingle-channel currentsCardiac myocytesCellsHeart cellsPhosphorylationAction potential repolarizationConductanceSubunitsProteinIntracellular dialysisMyocytesRegulationChannel currentsAdrenergic stimulationRegulation of Chloride Channels by Protein Kinase C in Normal and Cystic Fibrosis Airway Epithelia
Li M, McCann J, Anderson M, Clancy J, Liedtke C, Nairn A, Greengard P, Welsch M. Regulation of Chloride Channels by Protein Kinase C in Normal and Cystic Fibrosis Airway Epithelia. Science 1989, 244: 1353-1356. PMID: 2472006, DOI: 10.1126/science.2472006.Peer-Reviewed Original ResearchConceptsProtein kinase CChloride channelsKinase CApical membrane chloride channelMembrane chloride channelCystic fibrosis cellsMembrane proteinsCell-free membraneCystic fibrosis airway epitheliaChloride secretionIntact cellsPhorbol esterPhysiological statusDefective regulationAirway epithelial cellsEpithelial cellsCellsRegulationChannel inactivationCystic fibrosisActivationCalcium concentrationLow calcium concentrationsProteinAirway epithelium