2000
Prostaglandin E2 interaction with AVP: effects on AQP2 phosphorylation and distribution
Zelenina M, Christensen B, Palmér J, Nairn A, Nielsen S, Aperia A. Prostaglandin E2 interaction with AVP: effects on AQP2 phosphorylation and distribution. American Journal Of Physiology. Renal Physiology 2000, 278: f388-f394. PMID: 10710543, DOI: 10.1152/ajprenal.2000.278.3.f388.Peer-Reviewed Original ResearchConceptsTranslocation of AQP2AQP2 phosphorylationPlasma membraneAquaporin-2Subcellular distributionPlasma membrane-enriched fractionVesicle-enriched fractionsMembrane-enriched fractionDuct water permeabilityConsensus sitesIntracellular vesiclesPhosphorylationDifferential centrifugation techniqueAction of arginineRenal inner medullaE2 interactionRat renal inner medullaTranslocationInner medullaDose-dependent mannerWater channelsMembraneDephosphorylationTraffickingProtein
1996
Developmental expression of MARCKS and protein kinase C in mice in relation to the exencephaly resulting from MARCKS deficiency
Blackshear P, Lai W, Tuttle J, Stumpo D, Kennington E, Nairn A, Sulik K. Developmental expression of MARCKS and protein kinase C in mice in relation to the exencephaly resulting from MARCKS deficiency. Brain Research 1996, 96: 62-75. PMID: 8922669, DOI: 10.1016/0165-3806(96)00097-1.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBeta-GalactosidaseEmbryonic and Fetal DevelopmentGene Expression Regulation, DevelopmentalGene Expression Regulation, EnzymologicImmunohistochemistryIntracellular Signaling Peptides and ProteinsIsoenzymesMembrane ProteinsMiceMice, Inbred C57BLMice, TransgenicMyristoylated Alanine-Rich C Kinase SubstrateNerve Tissue ProteinsNeural Tube DefectsPhosphorylationProtein Kinase CProteinsRecombinant Fusion ProteinsConceptsProtein kinase CNeural tube closureKinase CPlasma membraneTube closureNeural tubeCranial neural tube closureMajor cellular substrateEmbryonic day 8.5MARCKS deficiencySpecific cell typesE8.5 embryosCranial neural tubeMouse geneFunctional defectsMARCKS proteinPerinatal lethalityMARCKSCellular substratesCranial neurulationMARCKS expressionUnderlying mesenchymeDevelopmental expressionPKC-alphaDay 8.5
1994
Subcellular localization of CFTR to endosomes in a ductal epithelium
Webster P, Vanacore L, Nairn A, Marino C. Subcellular localization of CFTR to endosomes in a ductal epithelium. American Journal Of Physiology 1994, 267: c340-c348. PMID: 7521124, DOI: 10.1152/ajpcell.1994.267.2.c340.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell MembraneCystic FibrosisCystic Fibrosis Transmembrane Conductance RegulatorEndocytosisEpitheliumFluorescent Antibody TechniqueImmunohistochemistryMaleMembrane ProteinsMicroscopy, FluorescenceOrganellesRatsRats, Sprague-DawleyReceptors, Cell SurfaceSubcellular FractionsSubmandibular GlandTissue DistributionConceptsCystic fibrosis transmembrane conductance regulatorPlasma membraneFibrosis transmembrane conductance regulatorApical plasma membraneAnti-CFTR antibodiesNormal epithelial cell populationsTransmembrane conductance regulatorCytochemical evidenceReceptor-mediated endocytosisCFTR moleculesEpithelial cell populationsCellular processesSubcellular compartmentsSubcellular localizationEarly endosomesMembrane recyclingConductance regulatorSubcellular distributionSubapical vesiclesApical poleEndosomesCFTR functionImmunoelectron microscopyCell populationsCFTR immunoreactivity
1992
MARCKS is an actin filament crosslinking protein regulated by protein kinase C and calcium–calmodulin
Hartwig J, Thelen M, Resen A, Janmey P, Nairn A, Aderem A. MARCKS is an actin filament crosslinking protein regulated by protein kinase C and calcium–calmodulin. Nature 1992, 356: 618-622. PMID: 1560845, DOI: 10.1038/356618a0.Peer-Reviewed Original ResearchMeSH KeywordsActin CytoskeletonActinsAmino Acid SequenceAnimalsBrainCalciumCalmodulinCattleCross-Linking ReagentsHomeostasisIntracellular Signaling Peptides and ProteinsKineticsMembrane ProteinsMicroscopy, ElectronMolecular Sequence DataMusclesMyristoylated Alanine-Rich C Kinase SubstratePhosphorylationProtein Kinase CProteinsRabbitsTime FactorsConceptsProtein kinase CPlasma membraneCalcium-calmodulinKinase CSignal transduction pathwaysPKC signal transduction pathwayActin filament crosslinking proteinActin cytoskeletonActin assemblyTransduction pathwaysMARCKS proteinFilamentous actinCrosslinking activitySpecific substratesSubstrates bindMARCKSCell morphologyProteinPhosphorylationActinMembraneCytoskeletonCalmodulinCytoplasmBindsCalmodulin and Protein Kinase C Cross‐Talk: The MARCKS Protein is an Actin Filament and Plasma Membrane Cross‐Linking Protein Regulated by Protein Kinase C Phosphorylation and by Calmodulin
Nairn A, Aderem A. Calmodulin and Protein Kinase C Cross‐Talk: The MARCKS Protein is an Actin Filament and Plasma Membrane Cross‐Linking Protein Regulated by Protein Kinase C Phosphorylation and by Calmodulin. Novartis Foundation Symposia 1992, 164: 145-161. PMID: 1395931, DOI: 10.1002/9780470514207.ch10.Peer-Reviewed Original ResearchConceptsCross-linking proteinsPlasma membraneF-actin cross-linking proteinsActin filamentsProtein kinase C phosphorylationAlanine-rich C kinase substrateKinase C phosphorylationGrowth factor-dependent mitogenesisSignal transduction pathwaysC kinase substrateActin-binding propertiesKinase substrateActivation of PKCTransduction pathwaysC phosphorylationMARCKS proteinInhibits phosphorylationMARCKSMembrane interactionsCycles of releaseSpecific substratesPhosphorylationPKCProteinCalmodulin
1991
Identification and localization of a dogfish homolog of human cystic fibrosis transmembrane conductance regulator.
Marshall J, Martin K, Picciotto M, Hockfield S, Nairn A, Kaczmarek L. Identification and localization of a dogfish homolog of human cystic fibrosis transmembrane conductance regulator. Journal Of Biological Chemistry 1991, 266: 22749-22754. PMID: 1718999, DOI: 10.1016/s0021-9258(18)54631-7.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsBase SequenceCell MembraneCloning, MolecularCystic FibrosisCystic Fibrosis Transmembrane Conductance RegulatorDNADogfishHumansImmunoenzyme TechniquesMembrane ProteinsMolecular Sequence DataMolecular WeightProtein KinasesRectumSebaceous GlandsSequence Homology, Nucleic AcidSubstrate SpecificityConceptsCystic fibrosis transmembrane conductance regulatorHuman cystic fibrosis transmembrane conductance regulatorFibrosis transmembrane conductance regulatorTransmembrane conductance regulatorDogfish proteinRectal glandConductance regulatorPutative substrate sitesCyclic AMP-dependent protein kinaseAMP-dependent protein kinaseMajor phosphorylation siteCyclic AMP-dependent protein phosphorylationApical plasma membraneAmino acid sequenceStudy of regulationPhosphorylation sitesProtein phosphorylationCDNA clonesProtein kinaseSimilar molecular massCFTR sequencePlasma membraneAcid sequenceImmunolocalization studiesMolecular massRegulation by phosphorylation of reversible association of a myristoylated protein kinase C substrate with the plasma membrane
Thelen M, Rosen A, Nairn A, Aderem A. Regulation by phosphorylation of reversible association of a myristoylated protein kinase C substrate with the plasma membrane. Nature 1991, 351: 320-322. PMID: 2034276, DOI: 10.1038/351320a0.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphateAutoradiographyCell MembraneEnzyme ActivationEthers, CyclicHumansIntracellular Signaling Peptides and ProteinsKineticsMembrane ProteinsMyristic AcidMyristic AcidsMyristoylated Alanine-Rich C Kinase SubstrateN-Formylmethionine Leucyl-PhenylalanineNeutrophilsOkadaic AcidPhosphorus RadioisotopesPhosphorylationProtein Kinase CProteinsTritiumConceptsProtein kinase CProtein kinase C substrateAlanine-rich C kinase substrateActin-membrane interactionsMembrane-bound substratesActin-binding proteinsSpecific PKC substrateC kinase substrateReceptor-mediated signalsMembrane targetingKinase substrateMembrane attachmentPKC substratePlasma membraneSubsequent dephosphorylationKinase CC substrateMARCKSNovel mechanismReversible associationProteinMembraneEffective bindingMyristoylationMacrophage activation
1990
Activation of protein kinase C results in the displacement of its myristoylated, alanine-rich substrate from punctate structures in macrophage filopodia.
Rosen A, Keenan K, Thelen M, Nairn A, Aderem A. Activation of protein kinase C results in the displacement of its myristoylated, alanine-rich substrate from punctate structures in macrophage filopodia. Journal Of Experimental Medicine 1990, 172: 1211-1215. PMID: 2212950, PMCID: PMC2188604, DOI: 10.1084/jem.172.4.1211.Peer-Reviewed Original ResearchConceptsProtein kinase CPKC-dependent phosphorylationPhosphorylation-dependent releaseProtein kinase C resultsAlanine-rich C kinase substrateDiverse cellular processesC kinase substrateCell-substratum interfacePhorbol esters resultsActivation of PKCPunctate stainingKinase substrateCellular processesProminent substratePunctate structuresMembrane cytoskeletonLoss of filopodiaPlasma membranePunctate distributionVariety of cellsCell spreadingMARCKSKinase CMacrophage filopodiaFilopodia
1988
Skeletal muscle sarcolemma proteins as targets for adenosine 3′:5′-monophosphate-dependent and calcium-dependent protein kinases
Walaas S, Horn R, Nairn A, Walaas O, Adler A. Skeletal muscle sarcolemma proteins as targets for adenosine 3′:5′-monophosphate-dependent and calcium-dependent protein kinases. Archives Of Biochemistry And Biophysics 1988, 262: 245-258. PMID: 3355169, DOI: 10.1016/0003-9861(88)90186-5.Peer-Reviewed Original ResearchConceptsCalcium-dependent protein kinaseProtein kinaseProtein phosphorylationPhosphorylation systemRat skeletal muscle plasma membranesCGMP-dependent protein kinaseIntrinsic membrane proteinsProtein phosphorylation systemsSkeletal muscle cellsSkeletal muscle plasma membranesSarcolemma proteinsMembrane proteinsProtein speciesMuscle plasma membranePlasma membraneMembrane targetsSpecific substratesKinaseMultiple hormonesDistinct setsProteinPhosphoproteinMuscle cellsPhosphorylationReticulum fractions