2020
Experimental Evolution of Human Rhinovirus Strains Adapting to Mouse Cells
Wasik B, Wasik B, Foxman E, Iwasaki A, Turner P. Experimental Evolution of Human Rhinovirus Strains Adapting to Mouse Cells. Genetic And Evolutionary Computation 2020, 145-157. DOI: 10.1007/978-3-030-39831-6_12.Peer-Reviewed Original ResearchMouse cellsIdentical selection pressuresExperimental evolution studiesLaboratory tissue cultureCommon cold illnessesViral capsid geneMolecular divergenceExperimental evolutionReplication genesSelection pressureRelated populationsGenetic changesRNA virusesHuman rhinovirus strainsCapsid geneEvolution studiesRV-1BInnate immunityGenesTissue cultureDifferent strainsCellsLA-4 cellsHostMouse host
2018
A minimal RNA ligand for potent RIG-I activation in living mice
Linehan MM, Dickey TH, Molinari ES, Fitzgerald ME, Potapova O, Iwasaki A, Pyle AM. A minimal RNA ligand for potent RIG-I activation in living mice. Science Advances 2018, 4: e1701854. PMID: 29492454, PMCID: PMC5821489, DOI: 10.1126/sciadv.1701854.Peer-Reviewed Original ResearchConceptsStem-loop RNAInterferon-stimulated genesImmune systemPotent synthetic activatorVertebrate immune systemType I interferonInnate immune systemRIG-I receptorRIG-I activationExpression networksRemodeling factorsPotent RIGRNA sequencingSpecific genesRNA ligandsI interferonAntiviral defenseInterferon responseRNA sensorsPolycytidylic acidSynthetic activatorsMiceInterferonGenesRNA
2014
Alternative Capture of Noncoding RNAs or Protein-Coding Genes by Herpesviruses to Alter Host T Cell Function
Guo YE, Riley KJ, Iwasaki A, Steitz JA. Alternative Capture of Noncoding RNAs or Protein-Coding Genes by Herpesviruses to Alter Host T Cell Function. Molecular Cell 2014, 54: 67-79. PMID: 24725595, PMCID: PMC4039351, DOI: 10.1016/j.molcel.2014.03.025.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntigens, CDAntigens, Differentiation, T-LymphocyteBase SequenceCallithrixEnzyme ActivationGene Expression RegulationGPI-Linked ProteinsGRB2 Adaptor ProteinHEK293 CellsHerpesvirus 2, SaimiriineHigh-Throughput Nucleotide SequencingHost-Pathogen InteractionsHumansImmunoprecipitationInterferon-gammaJurkat CellsLectins, C-TypeLymphocyte ActivationMicroRNAsMitogen-Activated Protein KinasesMolecular Sequence DataReceptors, Antigen, T-CellRNA StabilityRNA, UntranslatedRNA, ViralSemaphorinsSequence Analysis, RNASignal TransductionT-LymphocytesTime FactorsTransfectionConceptsMitogen-activated protein kinaseMiR-27Protein coding genesHerpesvirus saimiriHigh-throughput sequencingTCR-induced activationCell functionHSUR 1Γ-herpesvirusesNoncoding RNAsProtein kinaseEctopic expressionOncogenic γ-herpesvirusesTarget genesInduction of CD69MicroRNA-27Key modulatorRNACommon targetAlHV-1GenesCell receptorDiverse strategiesHost T-cell functionCells
2011
Genome–virome interactions: examining the role of common viral infections in complex disease
Foxman EF, Iwasaki A. Genome–virome interactions: examining the role of common viral infections in complex disease. Nature Reviews Microbiology 2011, 9: 254-264. PMID: 21407242, PMCID: PMC3678363, DOI: 10.1038/nrmicro2541.Peer-Reviewed Original ResearchConceptsGenome-wide association studiesAssociation studiesHuman genetic variationLarge regulatory networkHost-virus interactionsCrohn's diseaseRegulatory networksHost genesGenetic variationModel hostGenomic technologiesAutophagy pathwayAntiviral defenseViral infectionAdditional host factorsEnvironmental conditionsComplex diseasesCommon viral infectionsCases of asthmaSubsequent disease developmentGenesHostHost factorsDisease developmentParticular virus