2023
Advancing the fitness of gut commensal bacteria
Groisman E, Han W, Krypotou E. Advancing the fitness of gut commensal bacteria. Science 2023, 382: 766-768. PMID: 37972163, PMCID: PMC10838159, DOI: 10.1126/science.adh9165.Peer-Reviewed Original ResearchBacteria require phase separation for fitness in the mammalian gut
Krypotou E, Townsend G, Gao X, Tachiyama S, Liu J, Pokorzynski N, Goodman A, Groisman E. Bacteria require phase separation for fitness in the mammalian gut. Science 2023, 379: 1149-1156. PMID: 36927025, PMCID: PMC10148683, DOI: 10.1126/science.abn7229.Peer-Reviewed Original ResearchConceptsMammalian gutTranscription termination factor RhoTermination factor RhoGene regulationTranscription terminationMechanisms bacteriaBacteria interactionsHuman commensalValuable targetBacteriaRhoGut microbiotaFitnessNovel clinical applicationsTherapeutic manipulationGutHuman healthCommensalRegulation
2019
Control of Bacterial Virulence through the Peptide Signature of the Habitat
Krypotou E, Scortti M, Grundström C, Oelker M, Luisi B, Sauer-Eriksson A, Vázquez-Boland J. Control of Bacterial Virulence through the Peptide Signature of the Habitat. Cell Reports 2019, 26: 1815-1827.e5. PMID: 30759392, PMCID: PMC6389498, DOI: 10.1016/j.celrep.2019.01.073.Peer-Reviewed Original ResearchConceptsBacterial virulenceControl of bacterial virulenceFacultative intracellular bacterium Listeria monocytogenesOpp transport systemIntracellular bacterium Listeria monocytogenesBacterium Listeria monocytogenesGSH-binding siteVirulence programCo-crystallization studiesNutritional peptidesPrfAGenetic screeningTranscriptional activityOrganic N sourcesVirulenceNon-cysteine-containing peptidesSteric blockadeHost entryRegulation mechanismBinding sitesPeptide signaturesActive peptidesPeptideN sourcesOligopeptides
2017
Listeria Placental Infection
Vázquez-Boland J, Krypotou E, Scortti M. Listeria Placental Infection. MBio 2017, 8: 10.1128/mbio.00949-17. PMID: 28655824, PMCID: PMC5487735, DOI: 10.1128/mbio.00949-17.Peer-Reviewed Original ResearchConceptsCongenital neonatal infectionsAdverse pregnancy outcomesAbsence of overt illnessSystemic bacterial infectionNonhuman primate modelFetal complicationsCausative agent of listeriosisNeonatal infectionPreterm birthPregnancy outcomesPregnant womenFood-borne infectionsBacterial infectionsPrimate modelTransplacental infectionInfectionOvert illnessMedical interventionsCausative agentListeriosisComplicationsMiscarriageStillbirthPathophysiologyBirth
2016
Design and synthesis of purine analogues as highly specific ligands for FcyB, a ubiquitous fungal nucleobase transporter
Lougiakis N, Gavriil E, Kairis M, Sioupouli G, Lambrinidis G, Benaki D, Krypotou E, Mikros E, Marakos P, Pouli N, Diallinas G. Design and synthesis of purine analogues as highly specific ligands for FcyB, a ubiquitous fungal nucleobase transporter. Bioorganic & Medicinal Chemistry 2016, 24: 5941-5952. PMID: 27720327, DOI: 10.1016/j.bmc.2016.09.055.Peer-Reviewed Original Research
2015
Origin, diversification and substrate specificity in the family of NCS1/FUR transporters
Krypotou E, Evangelidis T, Bobonis J, Pittis A, Gabaldón T, Scazzocchio C, Mikros E, Diallinas G. Origin, diversification and substrate specificity in the family of NCS1/FUR transporters. Molecular Microbiology 2015, 96: 927-950. PMID: 25712422, DOI: 10.1111/mmi.12982.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAspergillus nidulansBinding SitesFungal ProteinsGene DuplicationGene Transfer, HorizontalMembrane Transport ProteinsMolecular Docking SimulationMolecular Dynamics SimulationMutationPhylogenyProtein ConformationProtein Structure, TertiaryPseudogenesSequence Homology, Amino AcidSubstrate SpecificitySymportersConceptsSubstrate specificitySubstrate binding siteFunctional diversificationModel fungus Aspergillus nidulansSystematic mutational analysisBinding sitesStructure-function analysisUptake of purinesNCS1 proteinsPlant homologuesFur proteinAspergillus nidulansGene duplicationHorizontal transferSubstrate dockingMutation analysisSub-familyHomology modelingMolecular mechanismsNCS1ProteinResiduesFurDiversificationNidulansFunctional characterization of NAT/NCS2 proteins of Aspergillus brasiliensis reveals a genuine xanthine–uric acid transporter and an intrinsically misfolded polypeptide
Krypotou E, Scazzocchio C, Diallinas G. Functional characterization of NAT/NCS2 proteins of Aspergillus brasiliensis reveals a genuine xanthine–uric acid transporter and an intrinsically misfolded polypeptide. Fungal Genetics And Biology 2015, 75: 56-63. PMID: 25639910, DOI: 10.1016/j.fgb.2015.01.009.Peer-Reviewed Original ResearchConceptsNucleobase-ascorbate transporterUptake of purinesAcid transportAspergillus nidulansMisfolded polypeptidesER-retainedGFP tagMisfolded proteinsHeterologous expressionEvolutionary implicationsInactive proteinPutative transportersAspergillus brasiliensisFunctional characterizationTurned-overPlasma membranePeptide sequencesIn silicoProteinSubfamilyAspergillusTransport functionLow affinityHigher affinityVacuoles
2014
Modelling, substrate docking and mutational analysis identify residues essential for function and specificity of the major fungal purine transporter AzgA
Krypotou E, Lambrinidis G, Evangelidis T, Mikros E, Diallinas G. Modelling, substrate docking and mutational analysis identify residues essential for function and specificity of the major fungal purine transporter AzgA. Molecular Microbiology 2014, 93: 129-145. PMID: 24818808, DOI: 10.1111/mmi.12646.Peer-Reviewed Original ResearchConceptsSubstrate dockingMutation analysisNucleobase-ascorbate transporterAmino acid residuesNAT familyAspergillus nidulansInverted repeatsSubstrate bindingSubstrate translocationA-helicesPurine bindingC-tailAcid residuesTransporter familyCytoplasmic N-H(+) bindingAzgATMS8TMS10Founding memberFlexible domainsBinding cavityGate domainTMS3Residues
2013
Transport assays in filamentous fungi: Kinetic characterization of the UapC purine transporter of Aspergillus nidulans
Krypotou E, Diallinas G. Transport assays in filamentous fungi: Kinetic characterization of the UapC purine transporter of Aspergillus nidulans. Fungal Genetics And Biology 2013, 63: 1-8. PMID: 24355588, DOI: 10.1016/j.fgb.2013.12.004.Peer-Reviewed Original ResearchConceptsFilamentous ascomycete Aspergillus nidulansUric acid-xanthine transporterSpecificity profileAscomycete Aspergillus nidulansTransport assaysNucleobase-ascorbate transporter familySubstrate specificity profileMeasured apparent KmGenetic null mutantsAspergillus nidulansA. nidulansNull mutantsFilamentous fungiGerminating conidiosporesTransporter familyKinetic characterizationGenetic backgroundCompetition assaysVmax valuesMaximal expressionApparent KmUapCMorphological stagesAssayKinetic analysisTransport Assays in Aspergillus nidulans
Krypotou E, Diallinas G. Transport Assays in Aspergillus nidulans. Bio-protocol 2013, 3 DOI: 10.21769/bioprotoc.971.Peer-Reviewed Original Research
2012
Modeling, Substrate Docking, and Mutational Analysis Identify Residues Essential for the Function and Specificity of a Eukaryotic Purine-Cytosine NCS1 Transporter*
Krypotou E, Kosti V, Amillis S, Myrianthopoulos V, Mikros E, Diallinas G. Modeling, Substrate Docking, and Mutational Analysis Identify Residues Essential for the Function and Specificity of a Eukaryotic Purine-Cytosine NCS1 Transporter*. Journal Of Biological Chemistry 2012, 287: 36792-36803. PMID: 22969088, PMCID: PMC3481282, DOI: 10.1074/jbc.m112.400382.Peer-Reviewed Original ResearchMeSH KeywordsAdenineAmino Acid MotifsAmino Acid SubstitutionAspergillus nidulansConserved SequenceCytosineFungal ProteinsGuanineHydrogen BondingHypoxanthineKineticsMolecular Docking SimulationMolecular Dynamics SimulationMutagenesis, Site-DirectedPhenotypeProtein BindingProtein Structure, TertiarySequence Homology, Amino AcidStructural Homology, ProteinSubstrate SpecificitySymportersConceptsAsn-350Substrate binding siteAsn-163Substrate bindingSubstrate dockingSer-85Trp-259Substrate binding residuesPrimary sequence alignmentBinding sitesSubstrate binding affinitySystematic functional analysisTransmembrane a-helicesEukaryotic membersSequence alignmentBacterial membersA-helicesCritical residuesC-tailMicrobacterium liquefaciensRelevant mutantsCytoplasmic N-Binding residuesTMS1TMS6