2020
Functional connectivity predicts changes in attention observed across minutes, days, and months
Rosenberg MD, Scheinost D, Greene AS, Avery EW, Kwon YH, Finn ES, Ramani R, Qiu M, Constable RT, Chun MM. Functional connectivity predicts changes in attention observed across minutes, days, and months. Proceedings Of The National Academy Of Sciences Of The United States Of America 2020, 117: 3797-3807. PMID: 32019892, PMCID: PMC7035597, DOI: 10.1073/pnas.1912226117.Peer-Reviewed Original ResearchConceptsConnectome-based predictive modelsAttentional stateSustained attentionIndividual differencesSustained attention functionFunctional connectivity signaturesFunctional brain connectivityFunctional connectivity patternsAttention functionConnectivity signaturesFunctional connectivityBrain connectivityConnectivity patternsAttentionSingle personSame patternIndividualsConnectivityIndependent studiesRecent workState changesPersonsPeopleDifferencesAbilityDistributed Patterns of Functional Connectivity Predict Working Memory Performance in Novel Healthy and Memory-impaired Individuals
Avery EW, Yoo K, Rosenberg MD, Greene AS, Gao S, Na DL, Scheinost D, Constable TR, Chun MM. Distributed Patterns of Functional Connectivity Predict Working Memory Performance in Novel Healthy and Memory-impaired Individuals. Journal Of Cognitive Neuroscience 2020, 32: 241-255. PMID: 31659926, PMCID: PMC8004893, DOI: 10.1162/jocn_a_01487.Peer-Reviewed Original ResearchConceptsFunctional connectivity patternsFluid intelligenceMemory performanceIndividual differencesAttention modelConnectome-based predictive modelingConnectome-based predictive modelsWhole-brain functional connectivity patternsGeneral cognitive abilitySuch individual differencesConnectivity patternsAdult life spanHuman Connectome ProjectHuman Connectome Project dataMemory relateCognitive abilitiesNeural basisSustained attentionMemory scoresParietal regionsFunctional connectivityConnectome ProjectMemory modelOlder adultsMemory
2016
Methylphenidate Modulates Functional Network Connectivity to Enhance Attention
Rosenberg MD, Zhang S, Hsu WT, Scheinost D, Finn ES, Shen X, Constable RT, Li CS, Chun MM. Methylphenidate Modulates Functional Network Connectivity to Enhance Attention. Journal Of Neuroscience 2016, 36: 9547-9557. PMID: 27629707, PMCID: PMC5039242, DOI: 10.1523/jneurosci.1746-16.2016.Peer-Reviewed Original ResearchConceptsAttention-deficit/hyperactivity disorderSustained attentionWhole-brain connectivity patternsFunctional brain networksHyperactivity disorderBrain networksConnectivity patternsConnectome-based predictive modeling approachWhole-brain functional connectivity patternsWhole-brain functional connectivity networksSustained attention taskStop-signal taskDose of methylphenidateFunctional network connectivityCausal roleFunctional connectivity patternsHealthy adultsAttention taskCognitive abilitiesPromising neuromarkerNetwork strengthBehavioral predictionsADHD treatmentConnectivity signaturesFunctional connectivity networks