2016
A Bright and Fast Red Fluorescent Protein Voltage Indicator That Reports Neuronal Activity in Organotypic Brain Slices
Abdelfattah AS, Farhi SL, Zhao Y, Brinks D, Zou P, Ruangkittisakul A, Platisa J, Pieribone VA, Ballanyi K, Cohen AE, Campbell RE. A Bright and Fast Red Fluorescent Protein Voltage Indicator That Reports Neuronal Activity in Organotypic Brain Slices. Journal Of Neuroscience 2016, 36: 2458-2472. PMID: 26911693, PMCID: PMC4764664, DOI: 10.1523/jneurosci.3484-15.2016.Peer-Reviewed Original ResearchConceptsVoltage indicatorsBlue-shifted channelrhodopsinRed-shifted fluorescent proteinsFluorescent voltage indicatorsWide-field fluorescence microscopyBlue excitationOptical imagingOptical electrophysiologyLow phototoxicityAutofluorescent backgroundLight photoactivationSingle-trial recordingsTemporal resolutionChannelrhodopsinIntrinsic advantagesExcitationVoltage oscillationsFluorescence microscopyOscillationsGreen indicatorsChromophoreMicroscopyResolution
2014
Mechanistic Studies of the Genetically Encoded Fluorescent Protein Voltage Probe ArcLight
Han Z, Jin L, Chen F, Loturco JJ, Cohen LB, Bondar A, Lazar J, Pieribone VA. Mechanistic Studies of the Genetically Encoded Fluorescent Protein Voltage Probe ArcLight. PLOS ONE 2014, 9: e113873. PMID: 25419571, PMCID: PMC4242678, DOI: 10.1371/journal.pone.0113873.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAmino AcidsAnimalsCells, CulturedFluorescenceFluorescent DyesGreen Fluorescent ProteinsHEK293 CellsHumansHydrogen-Ion ConcentrationKineticsLuminescent ProteinsMembrane PotentialsMicroscopy, ConfocalMutation, MissenseNeuronsPatch-Clamp TechniquesPrenylationRatsRecombinant Fusion ProteinsSpectrometry, Fluorescence
2011
Head-mountable high speed camera for optical neural recording
Park JH, Platisa J, Verhagen JV, Gautam SH, Osman A, Kim D, Pieribone VA, Culurciello E. Head-mountable high speed camera for optical neural recording. Journal Of Neuroscience Methods 2011, 201: 290-295. PMID: 21763348, PMCID: PMC3179772, DOI: 10.1016/j.jneumeth.2011.06.024.Peer-Reviewed Original Research
2004
A role for talin in presynaptic function
Morgan JR, Di Paolo G, Werner H, Shchedrina VA, Pypaert M, Pieribone VA, De Camilli P. A role for talin in presynaptic function. Journal Of Cell Biology 2004, 167: 43-50. PMID: 15479735, PMCID: PMC2172527, DOI: 10.1083/jcb.200406020.Peer-Reviewed Original ResearchMeSH KeywordsActinsAnimalsBlotting, WesternCell AdhesionClathrinEndocytosisGlutathione TransferaseHumansLampreysLipid MetabolismMicroscopy, ConfocalMicroscopy, Electron, TransmissionPeptidesPhosphotransferases (Alcohol Group Acceptor)Protein BindingProtein Structure, TertiaryRatsSynapsesTalinTime FactorsConceptsSynaptic vesicle endocytosisClathrin-mediated synaptic vesicle endocytosisClathrin-coated pitsEndocytic defectsMajor phosphatidylinositolActin cytoskeletonVesicle endocytosisActin dynamicsKinase interactionTalinPIP kinasePresynaptic compartmentFunctional linkCell adhesionNeuronal synapsesEndocytosisSynaptic rolePresynaptic functionSynaptic actinActinPhosphatidylinositolSynaptic structureIgammaClathrinCytoskeletonThe role of actin in the regulation of dendritic spine morphology and bidirectional synaptic plasticity
Chen Y, Bourne J, Pieribone VA, Fitzsimonds RM. The role of actin in the regulation of dendritic spine morphology and bidirectional synaptic plasticity. Neuroreport 2004, 15: 829-832. PMID: 15073524, DOI: 10.1097/00001756-200404090-00018.Peer-Reviewed Original ResearchMeSH KeywordsActinsAnimalsBridged Bicyclo Compounds, HeterocyclicCytochalasin DDendritesElectric StimulationExcitatory Postsynaptic PotentialsHippocampusIn Vitro TechniquesMaleMicroscopy, ElectronNeuronal PlasticityNeuronsNucleic Acid Synthesis InhibitorsRatsRats, Sprague-DawleySynapsesThiazolesThiazolidinesConceptsExcitatory synaptic transmissionDendritic spine morphologySynaptic transmissionSpine morphologyRat hippocampal slicesHigh-frequency stimulationLong-term depressionBidirectional synaptic plasticityHippocampal slicesIrreversible depressionExcitatory synapsesDendritic spinesMammalian CNSSynaptic efficacySynaptic plasticityDepressionSpineCNSPotentiationSynapses
2003
Midbrain serotonergic neurons are central pH chemoreceptors
Severson CA, Wang W, Pieribone VA, Dohle CI, Richerson GB. Midbrain serotonergic neurons are central pH chemoreceptors. Nature Neuroscience 2003, 6: 1139-1140. PMID: 14517544, DOI: 10.1038/nn1130.Peer-Reviewed Original Research
2002
Chemosensitive serotonergic neurons are closely associated with large medullary arteries
Bradley S, Pieribone V, Wang W, Severson C, Jacobs R, Richerson G. Chemosensitive serotonergic neurons are closely associated with large medullary arteries. Nature Neuroscience 2002, 5: 401-402. PMID: 11967547, DOI: 10.1038/nn848.Peer-Reviewed Original ResearchConceptsSudden infant death syndromeSerotonergic neuronsArterial blood CO2Central respiratory chemoreceptorsInfant death syndromePatch-clamp recordingsMedullary arteriesRat medullaBrain slicesDeath syndromeRespiratory chemoreceptorsLarge arteriesTryptophan hydroxylaseBrain functionNeuronsBlood CO2ArteryDevelopmental abnormalitiesMedullaConfocal imagingAnatomical specializationsSyndromeAbnormalitiesNeurons1A Genetically Targetable Fluorescent Probe of Channel Gating with Rapid Kinetics
Ataka K, Pieribone VA. A Genetically Targetable Fluorescent Probe of Channel Gating with Rapid Kinetics. Biophysical Journal 2002, 82: 509-516. PMID: 11751337, PMCID: PMC1302490, DOI: 10.1016/s0006-3495(02)75415-5.Peer-Reviewed Original ResearchConceptsGreen fluorescent proteinFluorescent proteinSkeletal muscle voltage-gated sodium channelVoltage-gated sodium channelsActivity reporterIntracellular loopChannel gatingTargetable fluorescent probeExcitable cellsFluorescent activity reportersMembrane potential changesExtended depolarizationSkeletal muscleReporterProteinSodium channelsChannel movementFluorescence signalRapid kineticsFluorescent probeCharge movementFluorescence
2000
Multiple messengers in descending serotonin neurons: localization and functional implications
Hökfelt T, Arvidsson U, Cullheim S, Millhorn D, Nicholas A, Pieribone V, Seroogy K, Ulfhake B. Multiple messengers in descending serotonin neurons: localization and functional implications. Journal Of Chemical Neuroanatomy 2000, 18: 75-86. PMID: 10708921, DOI: 10.1016/s0891-0618(99)00037-x.Peer-Reviewed Original ResearchConceptsGamma-amino butyric acidSerotonin neuronsInhibitory neurotransmitter gamma-amino butyric acidNeurotransmitter gamma-amino butyric acidRaphe serotonin neuronsPost-synaptic actionsParticular substance PNumber of neuropeptidesSerotonin projectionsDorsal hornVentral hornSubstance PSpinal cordSame neuronsRostral levelsSuch neuronsNeuronsEnzyme glutaminasePresent review articleGlutamateRecent studiesReview articleFunctional implicationsWide spectrumHorn
1999
Molecular evolution of the synapsin gene family
Kao H, Porton B, Hilfiker S, Stefani G, Pieribone V, DeSalle R, Greengard P. Molecular evolution of the synapsin gene family. Journal Of Experimental Zoology 1999, 285: 360-377. PMID: 10578110, DOI: 10.1002/(sici)1097-010x(19991215)285:4<360::aid-jez4>3.0.co;2-3.Peer-Reviewed Original ResearchConceptsSynapsin gene familyGene familySynapsin genesGene duplication eventsEvolution of vertebratesVariety of invertebratesSynaptic vesicle proteinsDuplication eventsMolecular evolutionMolecular phylogenyAncestral conditionHigher vertebratesFruit flyRegulation of neurotransmissionVesicle proteinsAdditional speciesProtein sequencesLongfin squidNeuronal phosphoproteinSynapsinVertebratesSpeciesGenesJ. ExpFamilyRegulation of Synaptotagmin I Phosphorylation by Multiple Protein Kinases
Hilfiker S, Pieribone V, Nordstedt C, Greengard P, Czernik A. Regulation of Synaptotagmin I Phosphorylation by Multiple Protein Kinases. Journal Of Neurochemistry 1999, 73: 921-932. PMID: 10461881, DOI: 10.1046/j.1471-4159.1999.0730921.x.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsCalcium-Binding ProteinsCalcium-Calmodulin-Dependent Protein Kinase Type 2Calcium-Calmodulin-Dependent Protein KinasesCasein Kinase IICell DifferentiationClathrinConserved SequenceHumansIsoenzymesMembrane GlycoproteinsMolecular Sequence DataNerve Tissue ProteinsPC12 CellsPeptide MappingPhosphoamino AcidsPhosphorylationProtein Kinase CProtein KinasesProtein Serine-Threonine KinasesRatsSynaptosomesSynaptotagmin ISynaptotagminsConceptsProtein kinase CSynaptotagmin IProtein kinaseKinase IISynaptic vesicle life cycleCasein kinase IIMultiple protein kinasesClathrin-coated vesiclesDependent protein kinase IICalcium-triggered exocytosisProtein kinase IICytoplasmic domainTryptic phosphopeptidesPhosphorylation stateRat synaptotagmin IKinase CCalcium sensorPhosphorylationKinaseSame residuesSynaptic vesiclesPC12 cellsPhorbol esterThr112I phosphorylation
1998
Regulation of iron metabolism in the sanguivore lamprey Lampetra fluviatilis
Andersen Ø, Pantopoulos K, Kao H, Muckenthaler M, Youson J, Pieribone V. Regulation of iron metabolism in the sanguivore lamprey Lampetra fluviatilis. The FEBS Journal 1998, 254: 223-229. PMID: 9660174, DOI: 10.1046/j.1432-1327.1998.2540223.x.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsBase SequenceCloning, MolecularConserved SequenceDNA PrimersDNA, ComplementaryEvolution, MolecularFerritinsHumansIn Vitro TechniquesIronIron Regulatory Protein 1Iron Regulatory Protein 2Iron-Regulatory ProteinsIron-Sulfur ProteinsLampreysMolecular Sequence DataPolymerase Chain ReactionProtein ConformationRatsRNA-Binding ProteinsSequence Homology, Amino AcidSequence Homology, Nucleic AcidConceptsIron-responsive elementFerritin iron-responsive elementLamprey Lampetra fluviatilisSequence identityIRE/IRP regulatory systemEvolution of vertebratesLampetra fluviatilisIron regulatory proteinsNorthern blot analysisVertebrate evolutionMammalian extractsAncient lineageExtant representativesCDNA sequenceH-ferritinFerritin cDNASpecific complexUntranslated regionIRP-1Regulatory systemIRP-2Blot analysisLampreyElectrophoretic mobilityKbGalanin–5-hydroxytryptamine interactions: electrophysiological, immunohistochemical and in situ hybridization studies on rat dorsal raphe neurons with a note on galanin R1 and R2 receptors
Xu Z, Zhang X, Pieribone VA, Grillner S, Hökfelt T. Galanin–5-hydroxytryptamine interactions: electrophysiological, immunohistochemical and in situ hybridization studies on rat dorsal raphe neurons with a note on galanin R1 and R2 receptors. Neuroscience 1998, 87: 79-94. PMID: 9722143, DOI: 10.1016/s0306-4522(98)00151-1.Peer-Reviewed Original ResearchConceptsDorsal raphe neuronsRaphe neuronsRat dorsal raphe neuronsCell bodiesOutward currentsInhibitory effectGalanin-like immunoreactivityDorsal raphe nucleusDose-dependent hyperpolarizationExtracellular potassium concentrationGalaninergic mechanismsSitu hybridization studiesGalanin receptorsRaphe nucleusSynaptic contactsNerve endingsPostsynaptic receptorsSoma levelGalaninImmunohistochemical analysisR2 receptorsGalanin R1NeuronsMood regulationPhysiological concentrations
1996
The distribution and significance of CNS adrenoceptors examined with in situ hybridization
Nicholas A, Hökfely T, Pieribone V. The distribution and significance of CNS adrenoceptors examined with in situ hybridization. Trends In Pharmacological Sciences 1996, 17: 245-255. PMID: 8756183, DOI: 10.1016/0165-6147(96)10022-5.Peer-Reviewed Original Research
1995
A Complementary Method to Radioligand‐Mediated Autoradiography for Localizing Adrenergic, Alpha‐2 Receptor‐Producing Cellsfn2
NICHOLAS A, PIERIBONE V, DAGERLIND Å, MEISTER B, ELDE R, HÖKFELT T. A Complementary Method to Radioligand‐Mediated Autoradiography for Localizing Adrenergic, Alpha‐2 Receptor‐Producing Cellsfn2. Annals Of The New York Academy Of Sciences 1995, 763: 222-242. PMID: 7677334, DOI: 10.1111/j.1749-6632.1995.tb32409.x.Peer-Reviewed Original ResearchGalanin induces a hyperpolarization of norepinephrine-containing locus coeruleus neurons in the brainstem slice
Pieribone VA, Xu Z, Zhang X, Grillner S, Bartfai T, Hökfelt T. Galanin induces a hyperpolarization of norepinephrine-containing locus coeruleus neurons in the brainstem slice. Neuroscience 1995, 64: 861-874. PMID: 7538638, DOI: 10.1016/0306-4522(94)00450-j.Peer-Reviewed Original ResearchConceptsLocus coeruleus neuronsCoeruleus neuronsLocus coeruleusNet outward currentGalanin responseOutward currentsATP-sensitive potassium channelsNorepinephrine-containing locus coeruleus neuronsCoexistence of galaninEffects of galaninPotassium concentrationExtracellular potassium concentrationEndogenous galaninGalanin applicationNormal potassium concentrationGalanin effectsGalanin immunoreactivityBrainstem slicesNorepinephrine neuronsAxonal originLow calcium mediumNeuronal somataSlice preparationImmunohistochemical stainingGalanin
1994
Distribution of alpha 1 adrenoceptors in rat brain revealed by in situ hybridization experiments utilizing subtype-specific probes
Pieribone V, Nicholas A, Dagerlind A, Hokfelt T. Distribution of alpha 1 adrenoceptors in rat brain revealed by in situ hybridization experiments utilizing subtype-specific probes. Journal Of Neuroscience 1994, 14: 4252-4268. PMID: 8027777, PMCID: PMC6577046, DOI: 10.1523/jneurosci.14-07-04252.1994.Peer-Reviewed Original ResearchConceptsAlpha 1A/DSpinal motor nucleiSpinal cordCerebral cortexMotor nucleusAmygdaloid nucleusLight labellingCA1-CA4 regionsAlpha-1 adrenoceptorsAlpha 1B-adrenoceptorsIntermediolateral cell columnInternal plexiform layerLateral amygdaloid nucleusReticular thalamic nucleusDistribution of neuronsMedullary raphe nucleiMedullary reticular formationCentral amygdaloid nucleusLateral hypothalamic nucleusInferior olivary nucleusReceptor distribution patternsSubtype-specific probesAdrenoceptor mRNANoradrenergic innervationAdrenoceptor subtypesA functional role for nitric oxide in locus coeruleus: immunohistochemical and electrophysiological studies
Xu Z, Pieribone V, Zhang X, Grillner S, Hökfelt T. A functional role for nitric oxide in locus coeruleus: immunohistochemical and electrophysiological studies. Experimental Brain Research 1994, 98: 75-83. PMID: 7516892, DOI: 10.1007/bf00229111.Peer-Reviewed Original ResearchMeSH Keywords6-Cyano-7-nitroquinoxaline-2,3-dioneAmino Acid OxidoreductasesAnimalsArginineElectric StimulationElectrophysiologyEvoked PotentialsHemoglobinsImmunohistochemistryIn Vitro TechniquesLocus CoeruleusMaleMicroscopy, ElectronNG-Nitroarginine Methyl EsterNitric OxideNitric Oxide SynthaseOmega-N-MethylarginineQuinoxalinesRatsRats, Sprague-DawleySynapsesSynaptic TransmissionTyrosine 3-MonooxygenaseConceptsNeuronal nitric oxideExcitatory postsynaptic potentialsLocus coeruleusNitric oxideFocal electrical stimulationNitric oxide synthaseArginine methyl esterNeuronal cell bodiesRat locus coeruleusNOS inhibitor nitroLC neuronsNG-monomethylLike immunoreactivityNOS inhibitorPostsynaptic potentialsBath applicationOxide synthaseIntracellular recordingsSynaptic transmissionBrain slicesImmunohistochemical analysisElectrophysiological studiesElectrical stimulationAxonal processesCell bodies
1993
Cellular localization of messenger RNA for beta-1 and beta-2 adrenergic receptors in rat brain: An in situ hybridization study
Nicholas AP, Pieribone VA, Hökfelt T. Cellular localization of messenger RNA for beta-1 and beta-2 adrenergic receptors in rat brain: An in situ hybridization study. Neuroscience 1993, 56: 1023-1039. PMID: 8284033, DOI: 10.1016/0306-4522(93)90148-9.Peer-Reviewed Original ResearchConceptsSpinal cordRat brainCentral nervous system circuitryBeta 1Messenger RNABeta-receptor subtypesThalamic intralaminar nucleiAnterior olfactory nucleusBeta 1 receptorsIntermediate gray matterReticular thalamic nucleusMedullary reticular formationNervous system circuitryReceptor messenger RNABeta 1 messenger RNABeta-2 adrenergic receptorsCentral nervous systemRat beta 1Selective labeling patternsDeep cerebellar nucleiUnfixed rat brainOlfactory nucleusTrapezoid nucleusCerebral cortexSitu hybridization studiesDistributions of mRNAs for alpha‐2 adrenergic receptor subtypes in rat brain: An in situ hybridization study
Nicholas A, Pieribone V, Hökfelt T. Distributions of mRNAs for alpha‐2 adrenergic receptor subtypes in rat brain: An in situ hybridization study. The Journal Of Comparative Neurology 1993, 328: 575-594. PMID: 8381444, DOI: 10.1002/cne.903280409.Peer-Reviewed Original ResearchConceptsCentral nervous systemNervous systemCerebral cortexSpinal cordReceptor subtypesRat brainAlpha-2 adrenergic receptor subtypesVentrolateral medullary reticular formationRat central nervous systemAlpha-2 receptor subtypesMRNA labelingAlpha 2 receptorsIntermediolateral cell columnThoracic spinal cordNucleus tractus solitariiReticular thalamic nucleusHypothalamic paraventricular nucleusMedullary reticular formationDorsal root gangliaIslands of CallejaAdrenergic receptor subtypesSelective labeling patternsDeep cerebellar nucleiAlpha 2 probeRat alpha-2A