2006
Axonal conduction and injury in multiple sclerosis: the role of sodium channels
Waxman SG. Axonal conduction and injury in multiple sclerosis: the role of sodium channels. Nature Reviews Neuroscience 2006, 7: 932-941. PMID: 17115075, DOI: 10.1038/nrn2023.Peer-Reviewed Original ResearchConceptsAxonal degenerationSodium channelsChannel isoformsDistinct pathophysiological rolesKey PointsMultiple sclerosisMultiple neurological deficitsRelapsing-remitting courseRestoration of conductionDegeneration of axonsCerebellar Purkinje neuronsVoltage-gated sodium channelsContext of demyelinationNeurological deficitsProgressive courseMultiple sclerosisAxonal conductionDisease progressionNav1.8 channelsConduction failurePathophysiological rolePurkinje neuronsCNS axonsFiring patternsLoss of coordinationAberrant expression
2000
Do ‘demyelinating’ diseases involve more than myelin?
Waxman S. Do ‘demyelinating’ diseases involve more than myelin? Nature Medicine 2000, 6: 738-739. PMID: 10888913, DOI: 10.1038/77450.Peer-Reviewed Original Research
1998
Transplanted Olfactory Ensheathing Cells Remyelinate and Enhance Axonal Conduction in the Demyelinated Dorsal Columns of the Rat Spinal Cord
Imaizumi T, Lankford K, Waxman S, Greer C, Kocsis J. Transplanted Olfactory Ensheathing Cells Remyelinate and Enhance Axonal Conduction in the Demyelinated Dorsal Columns of the Rat Spinal Cord. Journal Of Neuroscience 1998, 18: 6176-6185. PMID: 9698311, PMCID: PMC2605360, DOI: 10.1523/jneurosci.18-16-06176.1998.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAxonsElectrophysiologyFemaleMyelin SheathNeural ConductionNeuronsOlfactory NerveRatsRats, WistarSpinal CordConceptsDorsal column axonsRat spinal cordSpinal cordRemyelinated axonsDorsal columnsAdult rat spinal cordExtent of remyelinationTransplantation of OECsSpinal cord lesionsCell injection siteQuantitative histological analysisFunctional remyelinationCord lesionsAxonal conductionNeonatal ratsFocal injectionsConduction blockSchwann cellsConduction velocityInjection siteElectrophysiological propertiesAction potentialsAxonsHistological analysisTransplantationAxon Conduction and Survival in CNS White Matter During Energy Deprivation: A Developmental Study
Fern R, Davis P, Waxman S, Ransom B. Axon Conduction and Survival in CNS White Matter During Energy Deprivation: A Developmental Study. Journal Of Neurophysiology 1998, 79: 95-105. PMID: 9425180, DOI: 10.1152/jn.1998.79.1.95.Peer-Reviewed Original ResearchConceptsAnoxia/aglycemiaCompound action potentialWithdrawal of oxygenOptic nerveCNS white matterWhite matterIsolated rat optic nerveEvoked compound action potentialAdult optic nerveOptic nerve functionRat optic nervePostnatal day 10Permanent lossMin of glucoseEnergy deprivationWithdrawal of glucoseGlucose withdrawalNerve functionAstrocytic glycogenAxon conductionHeightened metabolic activityAdult ratsAglycemiaIrreversible injuryNerveResistance to anoxic injury in the dorsal columns of adult rat spinal cord following demyelination
Imaizumi T, Kocsis J, Waxman S. Resistance to anoxic injury in the dorsal columns of adult rat spinal cord following demyelination. Brain Research 1998, 779: 292-296. PMID: 9473700, DOI: 10.1016/s0006-8993(97)01171-2.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAnimalsDemyelinating DiseasesFemaleHypoxiaNeural ConductionRatsRats, WistarSpinal Cord DiseasesConceptsCompound action potentialDorsal columnsSpinal cordAction potentialsWhite matterSpinal cord dorsal columnAdult rat spinal cordAdult spinal cordRat spinal cordMin of reoxygenationAdult white matterAction potential conductionControl ratsFocal demyelinationAnoxic injurySupramaximal stimulationOnset of anoxiaAdult ratsDemyelinationPotential conductionCordX-irradiationRatsGreater recoveryOnset
1997
Differential Effects of NGF and BDNF on Axotomy-Induced Changes in GABAA-Receptor-Mediated Conductance and Sodium Currents in Cutaneous Afferent Neurons
Oyelese A, Rizzo M, Waxman S, Kocsis J. Differential Effects of NGF and BDNF on Axotomy-Induced Changes in GABAA-Receptor-Mediated Conductance and Sodium Currents in Cutaneous Afferent Neurons. Journal Of Neurophysiology 1997, 78: 31-42. PMID: 9242258, PMCID: PMC2605357, DOI: 10.1152/jn.1997.78.1.31.Peer-Reviewed Original ResearchConceptsBrain-derived neurotrophic factorCutaneous afferent neuronsNerve growth factorReceptor-mediated conductanceProportion of neuronsAfferent neuronsAction potential waveformSodium currentNeurotrophic factorL4/L5 DRG neuronsAction potentialsVoltage-dependent sodium currentsWhole-cell patch-clamp techniqueDorsal root ganglion neuronsCell patch-clamp techniqueAxotomy-induced increaseFluoro-Gold injectionsL5 DRG neuronsSpecific neurotrophic factorsSciatic nerve stumpsTTX-sensitive currentsInjury-induced changesResistant sodium currentsGamma-aminobutyric acidPatch-clamp technique
1995
Endogenous GABA attenuates CNS white matter dysfunction following anoxia
Fern R, Waxman S, Ransom B. Endogenous GABA attenuates CNS white matter dysfunction following anoxia. Journal Of Neuroscience 1995, 15: 699-708. PMID: 7823173, PMCID: PMC6578328, DOI: 10.1523/jneurosci.15-01-00699.1995.Peer-Reviewed Original ResearchConceptsCompound action potentialEffect of GABAWhite matterEndogenous GABA releaseNerve fiber injuryGABA-B antagonistRelease of GABACAP recoveryGABA-B receptorsCNS white matterPertussis toxin treatmentWhite matter dysfunctionGABA-A agonistHigh agonist concentrationsReceptor/G-proteinControl conditionG proteinsPresence of GABAMin of anoxiaMM nipecotic acidFiber injuryGABA releaseReceptor blockadeOptic nerveEndogenous GABA
1994
Activity‐dependent modulation of excitability: Implications for axonal physiology and pathophysiology
Stys P, Waxman S. Activity‐dependent modulation of excitability: Implications for axonal physiology and pathophysiology. Muscle & Nerve 1994, 17: 969-974. PMID: 7520532, DOI: 10.1002/mus.880170902.Peer-Reviewed Original Research
1993
Molecular dissection of the myelinated axon
Waxman S, Ritchie J. Molecular dissection of the myelinated axon. Annals Of Neurology 1993, 33: 121-136. PMID: 7679565, DOI: 10.1002/ana.410330202.Peer-Reviewed Original ResearchConceptsMyelinated axonsInternodal axon membraneDemyelinated axonsCentral nervous system white matterNervous system white matterRestoration of conductionImportant therapeutic approachSchwann cell processesWhite matter axonsInflux of Ca2Important pathophysiological implicationsGlial cell processesAction potential conductionAxonal excitabilityGlial cellsAnoxic injuryMyelinated fibersTherapeutic approachesAstrocyte processesCell processesPathophysiological implicationsRepetitive firingWhite matterNeurological disordersAction potentialsPeripheral nerve abnormalities in multiple sclerosis
Waxman S. Peripheral nerve abnormalities in multiple sclerosis. Muscle & Nerve 1993, 16: 1-5. PMID: 8380899, DOI: 10.1002/mus.880160102.Peer-Reviewed Original Research
1990
Anoxic injury of mammalian central white matter: Decreased susceptibility in myelin‐deficient optic nerve
Waxman S, Davis P, Black J, Ransom B. Anoxic injury of mammalian central white matter: Decreased susceptibility in myelin‐deficient optic nerve. Annals Of Neurology 1990, 28: 335-340. PMID: 2241117, DOI: 10.1002/ana.410280306.Peer-Reviewed Original ResearchConceptsCompound action potentialOptic nerveCentral white matterMinutes of anoxiaAction potentialsMD ratsWhite matterMammalian central white matterSupramaximal compound action potentialCompound action potential amplitudeAction potential amplitudeNeonatal optic nerveRat optic nerveControl optic nervesDistinct action potentialsWhite matter tractsUnaffected male littermatesAnoxic injuryMale littermatesDays postnatalNervePotential amplitudeOligodendroglial proliferationEffects of anoxiaAdult patternIon channel organization of the myelinated fiber
Black J, Kocsis J, Waxman S. Ion channel organization of the myelinated fiber. Trends In Neurosciences 1990, 13: 48-54. PMID: 1690930, DOI: 10.1016/0166-2236(90)90068-l.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsNerve Fibers, MyelinatedNeural ConductionPotassium ChannelsSodium Channels
1989
Demyelination in spinal cord injury
Waxman S. Demyelination in spinal cord injury. Journal Of The Neurological Sciences 1989, 91: 1-14. PMID: 2664092, DOI: 10.1016/0022-510x(89)90072-5.Peer-Reviewed Original ResearchConceptsSpinal cord injuryCord injuryDemyelinated axonsFunctional recoveryCompressive spinal cord injuryAbsence of remyelinationRecovery of conductionRecovery of functionSmall-diameter axonsModification of conductionHemorrhagic necrosisPathophysiological basisClinical criteriaComplete transectionSchwann cellsDemyelinationDiameter axonsAction potentialsInjuryDemyelinated fibersAxonsRemyelinationNeurophysiological evidencePhysiological studiesTransection
1984
Impulse conduction in inhomogeneous axons: Effects of variation in voltage-sensitive ionic conductances on invasion of demyelinated axon segments and preterminal fibers
Waxman S, Wood S. Impulse conduction in inhomogeneous axons: Effects of variation in voltage-sensitive ionic conductances on invasion of demyelinated axon segments and preterminal fibers. Brain Research 1984, 294: 111-122. PMID: 6697227, DOI: 10.1016/0006-8993(84)91314-3.Peer-Reviewed Original Research
1983
Regeneration of spinal neurons in inframammalian vertebrates: morphological and developmental aspects.
Anderson M, Waxman S. Regeneration of spinal neurons in inframammalian vertebrates: morphological and developmental aspects. Journal Für Hirnforschung 1983, 24: 371-98. PMID: 6643991.Peer-Reviewed Original ResearchConceptsSpinal cordNerve cell bodiesSpinal neuronsCell bodiesNerve fibersAxon reactionElectromotor neuronsInframammalian vertebratesSpinal electromotor neuronsPeripheral nerve bridgesMammalian spinal cordCell deathNerve bridgeNew neuronsEpendymal cellsTrophic effectsCordNerve growthNeuronsNerve outgrowthCertain hormonesGrowth factorSternarchusExternal laminaAxon outgrowthEffects of extracellular potassium concentration on the excitability of the parallel fibres of the rat cerebellum.
Kocsis J, Malenka R, Waxman S. Effects of extracellular potassium concentration on the excitability of the parallel fibres of the rat cerebellum. The Journal Of Physiology 1983, 334: 225-244. PMID: 6864558, PMCID: PMC1197311, DOI: 10.1113/jphysiol.1983.sp014491.Peer-Reviewed Original Research
1982
Regenerating mammalian nerve fibres: changes in action potential waveform and firing characteristics following blockage of potassium conductance
Kocsis J, Waxman S, Hildebrand C, Ruiz J. Regenerating mammalian nerve fibres: changes in action potential waveform and firing characteristics following blockage of potassium conductance. Proceedings Of The Royal Society B 1982, 217: 77-87. PMID: 6131423, DOI: 10.1098/rspb.1982.0095.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAminopyridinesAnimalsAxonsIon ChannelsMaleNerve RegenerationNeural ConductionPotassiumRatsConceptsRegenerating axonsNerve fibersFiring propertiesAction potentialsPotassium conductancePotassium channelsCompound action potentialSciatic nerve fibersEarly regenerating axonsAction potential waveformRat nerve fibresMammalian nerve fibresDemyelinated axonsMyelinated fibersExtracellular applicationAxonsRecording techniquesSingle stimulusFiring characteristicsPotential waveformPresent studyMembranes, Myelin, and the Pathophysiology of Multiple Sclerosis
Waxman S. Membranes, Myelin, and the Pathophysiology of Multiple Sclerosis. New England Journal Of Medicine 1982, 306: 1529-1533. PMID: 7043271, DOI: 10.1056/nejm198206243062505.Peer-Reviewed Original ResearchRat optic nerve: Electrophysiological, pharmacological and anatomical studies during development
Foster R, Connors B, Waxman S. Rat optic nerve: Electrophysiological, pharmacological and anatomical studies during development. Brain Research 1982, 3: 371-386. PMID: 7066695, DOI: 10.1016/0165-3806(82)90005-0.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, NewbornCalciumMicroscopy, ElectronNeural ConductionOptic NervePotassiumRatsRefractory Period, ElectrophysiologicalSodiumConceptsCompound action potentialAction potentialsConduction velocityOptic nerveOptic nerve axonsShort latency peaksRat optic nerveAxonal membrane propertiesShort-latency componentsSixth postnatal dayOnset of myelinationWeeks of ageRelative refractory periodDays of ageGlial cellsPostnatal dayRefractory periodNerve axonsAxonal diameterLatency componentsCalcium conductanceAxonal sizeMyelinationNerve growthLatency peaksConduction of trains of impulses in uniform myelinated fibers: Computed dependence on stimulus frequency
Wood S, Waxman S, Kocsis J. Conduction of trains of impulses in uniform myelinated fibers: Computed dependence on stimulus frequency. Neuroscience 1982, 7: 423-430. PMID: 7078731, DOI: 10.1016/0306-4522(82)90276-7.Peer-Reviewed Original Research