2001
Glycosylation Alters Steady-State Inactivation of Sodium Channel Nav1.9/NaN in Dorsal Root Ganglion Neurons and Is Developmentally Regulated
Tyrrell L, Renganathan M, Dib-Hajj S, Waxman S. Glycosylation Alters Steady-State Inactivation of Sodium Channel Nav1.9/NaN in Dorsal Root Ganglion Neurons and Is Developmentally Regulated. Journal Of Neuroscience 2001, 21: 9629-9637. PMID: 11739573, PMCID: PMC6763018, DOI: 10.1523/jneurosci.21-24-09629.2001.Peer-Reviewed Original ResearchMeSH KeywordsAgingAnimalsAnimals, NewbornAntibody SpecificityAxotomyCell MembraneCells, CulturedFemaleGanglia, SpinalGlycosylationImmunoblottingMembrane PotentialsN-Acetylneuraminic AcidNAV1.9 Voltage-Gated Sodium ChannelNeuraminidaseNeuronsNeuropeptidesPatch-Clamp TechniquesRatsRats, Sprague-DawleySciatic NerveSodiumSodium ChannelsSubcellular FractionsTetrodotoxinTrigeminal GanglionConceptsImmunoreactive proteinMembrane fractionAdult DRG neuronsTranscription-PCR analysisHigh molecular weight immunoreactive proteinTheoretical molecular weightWhole-cell patch-clamp analysisLong transcriptsGlycosylation statePatch-clamp analysisAdult tissuesLarge proteinsLimited glycosylationEnzymatic deglycosylationExtensive glycosylationState of glycosylationProteinAdult dorsal root gangliaGlycosylationNative neuronsDevelopmental changesInactivationMembrane preparationsDRG neuronsDorsal root gangliaFlanking regulatory sequences of the locus encoding the murine GDNF receptor, c‐ret, directs lac Z (β‐galactosidase) expression in developing somatosensory system
Sukumaran M, Waxman S, Wood J, Pachnis V. Flanking regulatory sequences of the locus encoding the murine GDNF receptor, c‐ret, directs lac Z (β‐galactosidase) expression in developing somatosensory system. Developmental Dynamics 2001, 222: 389-402. PMID: 11747074, DOI: 10.1002/dvdy.1192.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, NewbornBase SequenceChromosome MappingCloning, MolecularConsensus SequenceDrosophila ProteinsEmbryo, MammalianGanglia, SensoryGene ExpressionGene Expression Regulation, DevelopmentalGenes, RegulatorGlial Cell Line-Derived Neurotrophic Factor ReceptorsLac OperonLectinsMiceMice, TransgenicNeurons, AfferentNociceptorsPromoter Regions, GeneticProtein Structure, TertiaryProto-Oncogene ProteinsProto-Oncogene Proteins c-retReceptor Protein-Tyrosine KinasesSpinal CordTranscription Initiation SiteConceptsRegulatory domainLac Z expressionZ expressionCell type-specific expressionDistal regulatory domainEndogenous gene expressionCis-regulatory domainsTranscription initiation siteEntire structural geneSpecific regulatory domainsLac Z reporter geneStructural geneMouse genomeLateral mesodermRegulatory sequencesCpG islandsDNA sequencesPrimitive streakReporter geneFlanking sequencesCosmid contigGene expressionSpecific expressionTransgenic mouse lineInitiation site
1998
Endogenous NMDA-Receptor Activation Regulates Glutamate Release in Cultured Spinal Neurons
Robert A, Black J, Waxman S. Endogenous NMDA-Receptor Activation Regulates Glutamate Release in Cultured Spinal Neurons. Journal Of Neurophysiology 1998, 80: 196-208. PMID: 9658041, DOI: 10.1152/jn.1998.80.1.196.Peer-Reviewed Original ResearchMeSH Keywords2-Amino-5-phosphonovalerate6-Cyano-7-nitroquinoxaline-2,3-dioneAnimalsAnimals, NewbornBicucullineCells, CulturedExcitatory Amino Acid AntagonistsExcitatory Postsynaptic PotentialsGlutamic AcidNeuronsRatsRats, Sprague-DawleyReceptors, AMPAReceptors, N-Methyl-D-AspartateSpinal CordSynapsesTetrodotoxinTime FactorsConceptsAMPA excitatory postsynaptic currentsExcitatory postsynaptic currentsNMDA receptor activationCultured spinal neuronsNMDA receptorsSpinal neuronsPresynaptic terminalsNMDA receptor-mediated glutamatergic neurotransmissionSpontaneous excitatory postsynaptic currentsAspartate receptor activationNMDA receptor activityRelease of neurotransmittersNonsynaptic receptorsTTX applicationGlutamate releaseImmature neuronsGlutamatergic neurotransmissionPostsynaptic currentsSpinal cordReceptor activationReceptor activityQuantal sizeQuantal analysisCNS developmentElectrical activityEffects of Glucose Deprivation, Chemical Hypoxia, and Simulated Ischemia on Na+ Homeostasis in Rat Spinal Cord Astrocytes
Rose C, Waxman S, Ransom B. Effects of Glucose Deprivation, Chemical Hypoxia, and Simulated Ischemia on Na+ Homeostasis in Rat Spinal Cord Astrocytes. Journal Of Neuroscience 1998, 18: 3554-3562. PMID: 9570787, PMCID: PMC6793162, DOI: 10.1523/jneurosci.18-10-03554.1998.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, NewbornAntimetabolitesAstrocytesBenzofuransCell HypoxiaDeoxyglucoseEnergy MetabolismEnzyme InhibitorsEthers, CyclicExcitatory Amino Acid AgonistsFluorescent DyesFluorides, TopicalGlucoseGlycolysisHomeostasisIschemiaKainic AcidNeurotoxinsOuabainRatsRats, Sprague-DawleySodiumSodium AzideSodium FluorideSodium-Potassium-Exchanging ATPaseSpinal CordTetrodotoxinConceptsSpinal cord astrocytesChemical hypoxiaGlucose deprivationEnergy failureCultured spinal cord astrocytesGlutamatergic agonist kainateGlucose salineGlutamate reuptakeVivo ischemiaSpinal cordGlial functionMetabolic insultsSimulated ischemiaAgonist kainateIschemiaStandard salineAstrocytesSalineHypoxiaIntracellular ion concentrationsGlucose removalExtracellular spaceDeprivationL-lactateReperfusionNovel splice variants of the voltage-sensitive sodium channel alpha subunit
Oh Y, Waxman S. Novel splice variants of the voltage-sensitive sodium channel alpha subunit. Neuroreport 1998, 9: 1267-1272. PMID: 9631410, DOI: 10.1097/00001756-199805110-00002.Peer-Reviewed Original ResearchMeSH KeywordsAlternative SplicingAmino Acid SequenceAnimalsAnimals, NewbornAstrocytesAstrocytomaBrainBucladesineCalcimycinCells, CulturedGenetic VariationMacromolecular SubstancesModels, MolecularMolecular Sequence DataPolymerase Chain ReactionProtein ConformationRatsRats, Sprague-DawleySodium ChannelsSpinal CordUp-RegulationConceptsChannel alpha subunitNeuroblastoma cellsSpinal cord astrocytesB104 neuroblastoma cellsCultured rat astrocytesChannel mRNA expressionNovel splice variantSplice variantsSodium channel alpha subunitAlpha-subunit mRNASpinal cordCerebral astrocytesUnique regulatory pathwaysAlpha subunitRat astrocytesAstrocytesMRNA expressionSubunit mRNAsMicroM A23187Dibutyryl cAMPPremature truncationCellsExpressionRegulatory pathwaysCord
1996
Expression of mRNA for a sodium channel in subfamily 2 in spinal sensory neurons
Waxman S, Black J. Expression of mRNA for a sodium channel in subfamily 2 in spinal sensory neurons. Neurochemical Research 1996, 21: 395-401. PMID: 8734431, DOI: 10.1007/bf02527702.Peer-Reviewed Original ResearchConceptsDorsal root gangliaSpinal sensory neuronsSchwann cellsDRG neuronsSensory neuronsRat dorsal root gangliaSodium channelsΒ1 subunitExpression of mRNARoot gangliaSpinal cordSitu hybridization cytochemistryNeuronsΑ-subunitAntisense riboprobesBlot analysisType IMRNACellsExpressionHigh levelsGangliaRNA blot analysisHippocampusCord
1994
Astrocyte Na+ channels are required for maintenance of Na+/K(+)-ATPase activity
Sontheimer H, Fernandez-Marques E, Ullrich N, Pappas C, Waxman S. Astrocyte Na+ channels are required for maintenance of Na+/K(+)-ATPase activity. Journal Of Neuroscience 1994, 14: 2464-2475. PMID: 8182422, PMCID: PMC6577452, DOI: 10.1523/jneurosci.14-05-02464.1994.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, NewbornAstrocytesAstrocytomaCell LineCells, CulturedElectrophysiologyGanglia, SpinalGliomaMembrane PotentialsModels, BiologicalOuabainRatsRats, Sprague-DawleyRubidiumSodiumSodium ChannelsSodium-Potassium-Exchanging ATPaseStrophanthidinTetrodotoxinTime FactorsTumor Cells, CulturedConceptsEffects of TTXGlial cellsAction potential electrogenesisRat spinal cordPatch-clamp recordingsAstrocyte membrane potentialDose-dependent mannerVoltage-activated channelsAcute blockadeSpinal cordVoltage-activated ion channelsSpecific blockerATPase activityAstrocytesTTXAstrocyte deathAction potentialsUnidirectional influxBlockadeExcitable cellsIon channelsOuabainExtracellular spaceMembrane potentialIon levels
1990
Anoxic injury of mammalian central white matter: Decreased susceptibility in myelin‐deficient optic nerve
Waxman S, Davis P, Black J, Ransom B. Anoxic injury of mammalian central white matter: Decreased susceptibility in myelin‐deficient optic nerve. Annals Of Neurology 1990, 28: 335-340. PMID: 2241117, DOI: 10.1002/ana.410280306.Peer-Reviewed Original ResearchConceptsCompound action potentialOptic nerveCentral white matterMinutes of anoxiaAction potentialsMD ratsWhite matterMammalian central white matterSupramaximal compound action potentialCompound action potential amplitudeAction potential amplitudeNeonatal optic nerveRat optic nerveControl optic nervesDistinct action potentialsWhite matter tractsUnaffected male littermatesAnoxic injuryMale littermatesDays postnatalNervePotential amplitudeOligodendroglial proliferationEffects of anoxiaAdult pattern
1985
Membrane structure of vesiculotubular complexes in developing axons in rat optic nerve: freeze—fracture evidence for sequential membrane assembly
Waxman S, Black J. Membrane structure of vesiculotubular complexes in developing axons in rat optic nerve: freeze—fracture evidence for sequential membrane assembly. Proceedings Of The Royal Society B 1985, 225: 357-363. PMID: 2865731, DOI: 10.1098/rspb.1985.0066.Peer-Reviewed Original ResearchDorsal-ventral differences in the glia limitans of the spinal cord: an ultrastructural study in developing normal and irradiated rats.
Sims T, Gilmore S, Waxman S, Klinge E. Dorsal-ventral differences in the glia limitans of the spinal cord: an ultrastructural study in developing normal and irradiated rats. Journal Of Neuropathology & Experimental Neurology 1985, 44: 415-29. PMID: 4009209, DOI: 10.1097/00005072-198507000-00005.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, NewbornLumbosacral RegionRatsRats, Inbred StrainsSpinal CordTime FactorsConceptsLumbosacral spinal cordGlia limitansDays postnatalSpinal cordSubpial astrocytesRat lumbosacral spinal cordRadial glial processesDorsal-ventral differencesDorsal funiculusNormal ratsVentral surfaceSchwann cellsPostnatal ratsRadial gliaGlial processesRatsAstrocytesCordUltrastructural studyGreater numberLimitansNormal developmentGreater degreeGliaPostnatalRat optic nerve: Disruption of gliogenesis with 5-azacytidine during early postnatal development
Ransom B, Yamate C, Black J, Waxman S. Rat optic nerve: Disruption of gliogenesis with 5-azacytidine during early postnatal development. Brain Research 1985, 337: 41-49. PMID: 2408709, DOI: 10.1016/0006-8993(85)91607-5.Peer-Reviewed Original ResearchConceptsOptic nerveGlial cellsOptic nerve axonsRat optic nerveCompound action potentialEarly postnatal developmentDays of ageOlder nervesNeonatal treatmentBrain extracellular spaceNeuroglial interactionsElectrophysiological studiesNervePostnatal developmentAction potentialsNerve axonsExcitability propertiesMarked reductionMyelin formationGliogenesisMitotic inhibitorsIonic homeostasisExtracellular spaceAgeAnimals
1984
Postnatal differentiation of rat optic nerve fibers: Electron microscopic observations on the development of nodes of Ranvier and axoglial relations
Hildebrand C, Waxman S. Postnatal differentiation of rat optic nerve fibers: Electron microscopic observations on the development of nodes of Ranvier and axoglial relations. The Journal Of Comparative Neurology 1984, 224: 25-37. PMID: 6715578, DOI: 10.1002/cne.902240103.Peer-Reviewed Original ResearchConceptsRat optic nerve fibersOptic nerve fibersNerve fibersUnmyelinated optic nerve axonsPostnatal differentiationOptic nerve axonsPerinodal astrocytic processesAxoglial signallingNodes of RanvierVesiculotubular profilesOptic nerveRat pupsCompact myelin sheathAxolemmal undercoatingAstrocytic processesNerve axonsAxonal diameterMyelin sheathAxon segmentsAxonsAxolemmaRanvierDaysElectron microscopic observationsFunctional differentiation
1982
Rat optic nerve: Electrophysiological, pharmacological and anatomical studies during development
Foster R, Connors B, Waxman S. Rat optic nerve: Electrophysiological, pharmacological and anatomical studies during development. Brain Research 1982, 3: 371-386. PMID: 7066695, DOI: 10.1016/0165-3806(82)90005-0.Peer-Reviewed Original ResearchConceptsCompound action potentialAction potentialsConduction velocityOptic nerveOptic nerve axonsShort latency peaksRat optic nerveAxonal membrane propertiesShort-latency componentsSixth postnatal dayOnset of myelinationWeeks of ageRelative refractory periodDays of ageGlial cellsPostnatal dayRefractory periodNerve axonsAxonal diameterLatency componentsCalcium conductanceAxonal sizeMyelinationNerve growthLatency peaks