2017
COL6A5 variants in familial neuropathic chronic itch
Martinelli-Boneschi F, Colombi M, Castori M, Devigili G, Eleopra R, Malik RA, Ritelli M, Zoppi N, Dordoni C, Sorosina M, Grammatico P, Fadavi H, Gerrits MM, Almomani R, Faber CG, Merkies IS, Toniolo D, Network F, Cocca M, Doglioni C, Waxman S, Dib-Hajj S, Taiana M, Sassone J, Lombardi R, Cazzato D, Zauli A, Santoro S, Marchi M, Lauria G. COL6A5 variants in familial neuropathic chronic itch. Brain 2017, 140: 555-567. PMID: 28073787, DOI: 10.1093/brain/aww343.Peer-Reviewed Original ResearchConceptsChronic itchSmall fiber neuropathyJHS/EDS-HT patientsJoint hypermobility syndrome/Ehlers-Danlos syndrome hypermobility typeNew candidate therapeutic targetsIntraepidermal nerve fiber densityEhlers-Danlos syndrome hypermobility typeEDS-HT patientsNonsense variantNerve fiber densitySkin of patientsCandidate therapeutic targetUnrelated sporadic patientsWhole-exome sequencingItch reliefNeuropathic itchDiabetic patientsHypermobility typeSomatosensory pathwaysHealthy controlsSkin biopsiesSide effectsTherapeutic targetPatientsSporadic patients
2016
Pharmacotherapy for Pain in a Family With Inherited Erythromelalgia Guided by Genomic Analysis and Functional Profiling
Geha P, Yang Y, Estacion M, Schulman BR, Tokuno H, Apkarian AV, Dib-Hajj SD, Waxman SG. Pharmacotherapy for Pain in a Family With Inherited Erythromelalgia Guided by Genomic Analysis and Functional Profiling. JAMA Neurology 2016, 73: 659. PMID: 27088781, DOI: 10.1001/jamaneurol.2016.0389.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAdultAnalgesics, Non-NarcoticBrainCarbamazepineChronic PainDNA Mutational AnalysisDouble-Blind MethodElectric StimulationErythromelalgiaFemaleGanglia, SpinalHumansMagnetic Resonance ImagingMaleMutationNAV1.7 Voltage-Gated Sodium ChannelPain MeasurementRegression AnalysisSensory Receptor CellsConceptsMean episode durationDRG neuronsPatient 1Nav1.7 mutationEpisode durationDorsal root ganglion neuronsPlacebo-controlled studyMaintenance periodAttenuation of painEffects of carbamazepineBrain activityFunctional magnetic resonance imagingMagnetic resonance imagingT mutationMutant channelsFunctional magnetic resonanceNeuropathic painSecondary somatosensoryChronic painPain areaPatient 2Ganglion neuronsEffective pharmacotherapyNight awakeningsPlaceboPharmacological reversal of a pain phenotype in iPSC-derived sensory neurons and patients with inherited erythromelalgia
Cao L, McDonnell A, Nitzsche A, Alexandrou A, Saintot PP, Loucif AJ, Brown AR, Young G, Mis M, Randall A, Waxman SG, Stanley P, Kirby S, Tarabar S, Gutteridge A, Butt R, McKernan RM, Whiting P, Ali Z, Bilsland J, Stevens EB. Pharmacological reversal of a pain phenotype in iPSC-derived sensory neurons and patients with inherited erythromelalgia. Science Translational Medicine 2016, 8: 335ra56. PMID: 27099175, DOI: 10.1126/scitranslmed.aad7653.Peer-Reviewed Original ResearchConceptsSensory neuronsPain conditionsSodium channelsClinical phenotypeSensory neuronal activityChronic pain conditionsHeat-induced painPeripheral nervous systemUnmet clinical needSodium channel Nav1.7Nav1.7 sodium channelNav1.7 blockersPharmacological reversalPain phenotypesExtreme painNeuronal activityHeat stimuliNervous systemChannel Nav1.7PainClinical needPatientsAberrant responsesSensory conditionsInduced pluripotent stem cell line
2015
Contactin-1 and Neurofascin-155/-186 Are Not Targets of Auto-Antibodies in Multifocal Motor Neuropathy
Doppler K, Appeltshauser L, Krämer HH, Ng JK, Meinl E, Villmann C, Brophy P, Dib-Hajj SD, Waxman SG, Weishaupt A, Sommer C. Contactin-1 and Neurofascin-155/-186 Are Not Targets of Auto-Antibodies in Multifocal Motor Neuropathy. PLOS ONE 2015, 10: e0134274. PMID: 26218529, PMCID: PMC4517860, DOI: 10.1371/journal.pone.0134274.Peer-Reviewed Original ResearchConceptsMultifocal motor neuropathyMotor neuropathyContactin-1Neurofascin 155Multifocal motor neuropathy patientsChronic inflammatory demyelinating polyneuropathyInflammatory demyelinating polyneuropathySubgroup of patientsNeurofascin-186Enzyme-linked immunosorbentHuman embryonic kidney 293 cellsDemyelinating polyneuropathyAuto antibodiesEmbryonic kidney 293 cellsMuscle weaknessNeuropathy patientsPatient seraConduction blockParanodal proteinsNeuropathyPatientsKidney 293 cellsIgMSerumDifferent assaysDe novo gain-of-function and loss-of-function mutations of SCN8A in patients with intellectual disabilities and epilepsy
Blanchard MG, Willemsen MH, Walker JB, Dib-Hajj SD, Waxman SG, Jongmans M, Kleefstra T, van de Warrenburg BP, Praamstra P, Nicolai J, Yntema HG, Bindels R, Meisler MH, Kamsteeg EJ. De novo gain-of-function and loss-of-function mutations of SCN8A in patients with intellectual disabilities and epilepsy. Journal Of Medical Genetics 2015, 52: 330. PMID: 25725044, PMCID: PMC4413743, DOI: 10.1136/jmedgenet-2014-102813.Peer-Reviewed Original ResearchConceptsClinical exome sequencingClinical featuresEarly-infantile epileptic encephalopathy type 13Intellectual disabilityVoltage-gated sodium channel Nav1.6De novo SCN8A mutationFunction mutationsExome sequencingSodium channel Nav1.6Variable clinical featuresGenotype-phenotype correlationSCN8A mutationsChannel Nav1.6Hyperpolarising shiftMutant sodium channelsPatientsDe novoHeterozygous lossSodium channelsElectrophysiological analysisClinical interpretationType 13DisabilitySeizuresWildtype channel
2014
Paroxysmal itch caused by gain-of-function Nav1.7 mutation
Devigili G, Eleopra R, Pierro T, Lombardi R, Rinaldo S, Lettieri C, Faber C, Merkies I, Waxman S, Lauria G. Paroxysmal itch caused by gain-of-function Nav1.7 mutation. Pain 2014, 155: 1702-1707. PMID: 24820863, DOI: 10.1016/j.pain.2014.05.006.Peer-Reviewed Original ResearchConceptsIntraepidermal nerve fiber densityNerve fiber densityFiber densityAutonomic cardiovascular reflexesFunction Nav1.7 mutationsNerve conduction studiesManifestations of allergyQuantitative sensory testingParadoxical heat sensationProfile assessmentConsequence of diseaseNav1.7 sodium channelCardiovascular reflexesPregabalin treatmentAutonomic testsConduction studiesNav1.7 mutationPain thresholdClinical pictureSystemic diseaseSomatosensory pathwaysSkin biopsiesIndex patientsSensory testingSpicy foods
2012
Gain-of-function Nav1.8 mutations in painful neuropathy
Faber CG, Lauria G, Merkies IS, Cheng X, Han C, Ahn HS, Persson AK, Hoeijmakers JG, Gerrits MM, Pierro T, Lombardi R, Kapetis D, Dib-Hajj SD, Waxman SG. Gain-of-function Nav1.8 mutations in painful neuropathy. Proceedings Of The National Academy Of Sciences Of The United States Of America 2012, 109: 19444-19449. PMID: 23115331, PMCID: PMC3511073, DOI: 10.1073/pnas.1216080109.Peer-Reviewed Original ResearchConceptsPainful peripheral neuropathySmall fiber neuropathyPainful neuropathyPeripheral neuropathyPainful small fiber neuropathyDorsal root ganglion neuronsSodium channelsApparent underlying causePeripheral nerve axonsDRG neuronsGanglion neuronsNeuropathyNerve axonsUnderlying causeFunction variantsCurrent clampPatientsPotential pathogenicityNeuronsMutationsHyperexcitabilityAxonsResponse
2008
Multiple sodium channel isoforms and mitogen‐activated protein kinases are present in painful human neuromas
Black JA, Nikolajsen L, Kroner K, Jensen TS, Waxman SG. Multiple sodium channel isoforms and mitogen‐activated protein kinases are present in painful human neuromas. Annals Of Neurology 2008, 64: 644-653. PMID: 19107992, DOI: 10.1002/ana.21527.Peer-Reviewed Original ResearchConceptsMultiple sodium channel isoformsHuman neuromasSodium channel isoformsPainful neuromasMitogen-activated protein kinaseERK1/2 MAP kinasesNeuronal voltage-gated sodium channelsChannel isoformsSodium channel Nav1.3Sodium channelsSpontaneous ectopic dischargeTreatment of painSodium channel Nav1.1Possible therapeutic targetVoltage-gated sodium channelsMAP kinase p38Ectopic dischargesChronic painTraumatic neuromaChannel Nav1.1MAP kinaseExtracellular signal-regulated kinases 1NeuromaTherapeutic targetPain
2000
A double mutation in families with periodic paralysis defines new aspects of sodium channel slow inactivation
Bendahhou S, Cummins T, Hahn A, Langlois S, Waxman S, Ptácek L. A double mutation in families with periodic paralysis defines new aspects of sodium channel slow inactivation. Journal Of Clinical Investigation 2000, 106: 431-438. PMID: 10930446, PMCID: PMC314328, DOI: 10.1172/jci9654.Peer-Reviewed Original ResearchConceptsChannel slow inactivationPeriodic paralysisSlow inactivationSodium channel slow inactivationMalignant hyperthermia susceptibilitySkeletal muscle disordersHuman skeletal muscleParalytic attacksMuscle disordersHyperkalemic periodic paralysisSkeletal muscleParalysisDisease-causing mutationsNovel mutationsHyperKPPChannel defectsMolecular determinantsAlpha subunitMutant channelsMutationsDouble mutationInactivationPatientsTransmembrane segments S5
1995
Letters to the editor
Vital C, Coquet M, Mazat J, Valberg S, Nelson D, Chaudhry V, Crawford T, Clouston P, Triggs W, Gilmore R, Burke D, Miller T, Kiernan M, Mogyoros I, Stys P, Waxman S. Letters to the editor. Muscle & Nerve 1995, 18: 673-677. PMID: 7753132, DOI: 10.1002/mus.880180619.Peer-Reviewed Original Research
1991
Lhermitte's sign in a patient with herpes zoster
Vollmer T, Brass L, Waxman S. Lhermitte's sign in a patient with herpes zoster. Journal Of The Neurological Sciences 1991, 106: 153-157. PMID: 1802963, DOI: 10.1016/0022-510x(91)90252-3.Peer-Reviewed Original Research
1988
Evoked potentials in suspected multiple sclerosis: Diagnostic value and prediction of clinical course
Hume A, Waxman S. Evoked potentials in suspected multiple sclerosis: Diagnostic value and prediction of clinical course. Journal Of The Neurological Sciences 1988, 83: 191-210. PMID: 3128646, DOI: 10.1016/0022-510x(88)90068-8.Peer-Reviewed Original ResearchConceptsSilent lesionsMultiple sclerosisOptic neuritisIsolated optic neuritisDefinite multiple sclerosisEP abnormalitiesMS suspectsClinical deteriorationBrainstem auditoryClinical courseVisual EPsChance of deteriorationNeurologic disordersOnly abnormalityNormal EPsPatientsAuditory EPsClinical diagnosisDiagnostic valueLesionsSclerosisNeuritisChronicAbnormalitiesFollow
1987
Dyslexia
Shaywitz B, Waxman S. Dyslexia. New England Journal Of Medicine 1987, 316: 1268-1270. PMID: 3574387, DOI: 10.1056/nejm198705143162008.Peer-Reviewed Original Research
1983
Major morbidity related to hyperthermia in multiple sclerosis
Waxman S, Geschwind N. Major morbidity related to hyperthermia in multiple sclerosis. Annals Of Neurology 1983, 13: 348-348. PMID: 6847156, DOI: 10.1002/ana.410130331.Peer-Reviewed Original Research
1982
Diabetic Radiculoneuropathy: Clinical patterns of sensory loss and distal paresthesias
Waxman S. Diabetic Radiculoneuropathy: Clinical patterns of sensory loss and distal paresthesias. Acta Diabetologica 1982, 19: 199-207. PMID: 7148327, DOI: 10.1007/bf02624679.Peer-Reviewed Original Research
1981
Diabetic Truncal Polyneuropathy
Waxman S, Sabin T. Diabetic Truncal Polyneuropathy. JAMA Neurology 1981, 38: 46-47. PMID: 7458723, DOI: 10.1001/archneur.1981.00510010072013.Peer-Reviewed Original Research
1980
Myoelectric silence following unopposed passive stretch in normal man.
Angel R, Waxman S, Kocsis J. Myoelectric silence following unopposed passive stretch in normal man. Journal Of Neurology Neurosurgery & Psychiatry 1980, 43: 705. PMID: 7431031, PMCID: PMC490642, DOI: 10.1136/jnnp.43.8.705.Peer-Reviewed Original ResearchConceptsNormal menMyoelectric silencePassive stretchAfferent reflex pathwaysPassive muscle stretchSpindle afferent dischargeAutogenetic inhibitionLengthening reactionReflex pathwaysSustained contractionAfferent dischargeMyotatic reflexEMG activityMuscle stretchLower limbsSilent periodFusimotor activityRenshaw inhibitionInitial responseBrief cessationMuscleMenPossible mechanismInhibitionResponse
1975
The Interictal Behavior Syndrome of Temporal Lobe Epilepsy
Waxman S, Geschwind N. The Interictal Behavior Syndrome of Temporal Lobe Epilepsy. JAMA Psychiatry 1975, 32: 1580-1586. PMID: 1200777, DOI: 10.1001/archpsyc.1975.01760300118011.Peer-Reviewed Original ResearchConceptsTemporal lobe epilepsyLobe epilepsyInterictal behavior syndromeInterictal spike activityBehavior syndromeGreat diagnostic valuePathophysiologic basisDistinct syndromeManifest seizuresSpike activitySyndromeDiagnostic valueEpilepsyBehavior alterationsAnatomic locusNeural substratesSexual behaviorBehavioral changesBehavioral syndromeBehavior changeUseful modelAlterationsPatientsDysfunctionSeizures
1974
Hypergraphia in temporal lobe epilepsy.
WAXMAN S, GESCHWIND N. Hypergraphia in temporal lobe epilepsy. Neurology 1974, 24: 629-36. PMID: 4209727, DOI: 10.1212/wnl.24.7.629.Peer-Reviewed Original Research