2005
19 Molecular Mechanisms of Calcium Influx in Axonal Degeneration
Stys P, Waxman S. 19 Molecular Mechanisms of Calcium Influx in Axonal Degeneration. 2005, 275-292. DOI: 10.1016/b978-012738761-1/50020-1.Peer-Reviewed Original ResearchExperimental autoimmune encephalomyelitisAxonal degenerationMultiple sclerosisAxonal injuryCalcium influxInflammatory central nervous system disordersCentral nervous system disordersAcute axonal injuryPotential neuroprotective strategiesWhite matter injuryCellular calcium overloadNervous system disordersAutoimmune encephalomyelitisAxonal damageNeuroprotective strategiesGlutamate releasePathophysiological mechanismsCa overloadCalcium overloadSystem disordersInadequate deliveryMyelinated axonsAberrant operationNitric oxideCa channels
1997
Immunolocalization of the Na+–Ca2+ exchanger in mammalian myelinated axons
Steffensen I, Waxman S, Mills L, Stys P. Immunolocalization of the Na+–Ca2+ exchanger in mammalian myelinated axons. Brain Research 1997, 776: 1-9. PMID: 9439790, DOI: 10.1016/s0006-8993(97)00868-8.Peer-Reviewed Original ResearchConceptsOptic nerveSpinal cordDorsal root axonsSciatic nerve sectionRat optic nerveCentral myelinated axonsCardiac type IFiner processesSimilar staining patternNerve sectionDorsal columnsSciatic nerveFrozen cryostat sectionsAnoxic injuryAxonal profilesImmunofluorescence labeling techniqueMyelinated axonsCell bodiesCryostat sectionsImportant mediatorAxonal localizationMammalian axonsNerveAxonsStaining patternFunctional Repair of Myelinated Fibers in the Spinal Cord by Transplantation of Glial Cells
Waxman S, Kocsis J. Functional Repair of Myelinated Fibers in the Spinal Cord by Transplantation of Glial Cells. Altschul Symposia Series 1997, 283-298. DOI: 10.1007/978-1-4615-5949-8_28.Peer-Reviewed Original ResearchConduction velocityMyelinated axonsMyelin sheathNon-myelinated fibresClinical deficitsMyelin damageConduction abnormalitiesDemyelinated axonsSpinal cordGlial cellsMyelinated fibersConduction blockSynaptic terminalsAction potentialsRefractory periodCell bodiesDemyelinated fibersAxonsFunctional repair
1994
Anoxic injury of rat optic nerve: ultrastructural evidence for coupling between Na+ influx and Ca2+-mediated injury in myelinated CNS axons
Waxman S, Black J, Ransom B, Stys P. Anoxic injury of rat optic nerve: ultrastructural evidence for coupling between Na+ influx and Ca2+-mediated injury in myelinated CNS axons. Brain Research 1994, 644: 197-204. PMID: 8050031, DOI: 10.1016/0006-8993(94)91680-2.Peer-Reviewed Original ResearchConceptsOptic nerveOptic nerve axonsRat optic nerveNerve axonsBrain slice chamberCompound action potentialLoss of cristaeMicroM tetrodotoxinAnoxic injuryNormoxic controlsNerveAstrocyte processesPerinodal astrocyte processesWhite matterMyelinated axonsAstrocytic processesCNS axonsTetrodotoxinAction potentialsSlice chamberAxonsLoss of microtubulesCytoskeletal damageInjuryNormoxic conditionsAnoxic Injury of Central Myelinated Axons: Nonsynaptic Ionic Mechanisms
Ransom B, Waxman S, Stys P. Anoxic Injury of Central Myelinated Axons: Nonsynaptic Ionic Mechanisms. 1994, 77-90. DOI: 10.1007/978-3-642-78151-3_9.Peer-Reviewed Original ResearchGlial cellsAnoxic injuryWhite matterCentral nervous system traumaIrreversible anoxic injuryPathophysiology of strokeNervous system traumaCentral myelinated axonsNeuronal cell bodiesAnoxia/ischemiaGray matter areasCNS axonal injuryNeuronal injuryIonic mechanismsAxonal injurySystem traumaCell injuryMyelinated axonsInjuryCell bodiesAxonsMatter areasBrainMetabolic substratesReliable model system
1993
Protection of the axonal cytoskeleton in anoxic optic nerve by decreased extracellular calcium
Waxman S, Black J, Ransom B, Stys P. Protection of the axonal cytoskeleton in anoxic optic nerve by decreased extracellular calcium. Brain Research 1993, 614: 137-145. PMID: 8348309, DOI: 10.1016/0006-8993(93)91027-p.Peer-Reviewed Original ResearchConceptsArtificial cerebrospinal fluidMin of anoxiaOptic nerveZero-Ca2White matterAnoxic injuryCNS white matter tractAxonal cytoskeletonOptic nerve axonsCNS white matterRat optic nerveInflux of Ca2White matter tractsLoss of cristaeDisorganization of cristaeMembranous profilesUltrastructure of axonsAbnormal influxCerebrospinal fluidExtracellular calciumNerveMyelinated axonsNerve axonsNormal Ca2AxonsMolecular dissection of the myelinated axon
Waxman S, Ritchie J. Molecular dissection of the myelinated axon. Annals Of Neurology 1993, 33: 121-136. PMID: 7679565, DOI: 10.1002/ana.410330202.Peer-Reviewed Original ResearchConceptsMyelinated axonsInternodal axon membraneDemyelinated axonsCentral nervous system white matterNervous system white matterRestoration of conductionImportant therapeutic approachSchwann cell processesWhite matter axonsInflux of Ca2Important pathophysiological implicationsGlial cell processesAction potential conductionAxonal excitabilityGlial cellsAnoxic injuryMyelinated fibersTherapeutic approachesAstrocyte processesCell processesPathophysiological implicationsRepetitive firingWhite matterNeurological disordersAction potentials
1990
Ion channel organization of the myelinated fiber
Black J, Kocsis J, Waxman S. Ion channel organization of the myelinated fiber. Trends In Neurosciences 1990, 13: 48-54. PMID: 1690930, DOI: 10.1016/0166-2236(90)90068-l.Peer-Reviewed Original Research
1988
Evidence for the presence of two types of potassium channels in the rat optic nerve
Gordon T, Kocsis J, Waxman S. Evidence for the presence of two types of potassium channels in the rat optic nerve. Brain Research 1988, 447: 1-9. PMID: 2454699, DOI: 10.1016/0006-8993(88)90959-6.Peer-Reviewed Original ResearchConceptsRat optic nervePostspike positivityOptic nerveAction potential waveformPotassium channelsAction potential broadeningSingle-fiber recordingsRepetitive firing patternsAction potential repolarizationTEA-sensitive channelsDistinct potassium channelsPotential waveformPronounced afterhyperpolarizationFiber recordingsWhole nerveIntracellular hyperpolarizationGap recordingsRepetitive firingMyelinated axonsNerveAction potentialsPotential repolarizationAfterhyperpolarizationFiring patternsProlonged depolarization
1987
Chapter 8 Ionic channel organization of normal and regenerating mammalian axons
Kocsis J, Waxman S. Chapter 8 Ionic channel organization of normal and regenerating mammalian axons. Progress In Brain Research 1987, 71: 89-101. PMID: 2438722, DOI: 10.1016/s0079-6123(08)61816-6.Peer-Reviewed Original ResearchConceptsNerve fibersPeripheral nervesRegenerated nerve fibersCell remodellingNormal developmentMammalian nerve fibresSchwann cellsElectrophysiological characteristicsFine caliberMyelinated axonsImmature axonsAxonal growthMammalian axonsNerveNormal maturationRemodelling occursAxonsCell arrestRemodellingTime courseMyelinIonic channelsLong termMaturationTime of maturation
1983
Long-term regenerated nerve fibres retain sensitivity to potassium channel blocking agents
Kocsis J, Waxman S. Long-term regenerated nerve fibres retain sensitivity to potassium channel blocking agents. Nature 1983, 304: 640-642. PMID: 6308475, DOI: 10.1038/304640a0.Peer-Reviewed Original ResearchConceptsNerve fibersPotassium channelsMyelinated peripheral nerve fibresAxon segmentsPeripheral nerve fibersAxon sproutsEndoneurial tubesNerve crushFunctional recoveryFunctional organizationMyelinated fibersAxon cylindersSchwann cellsBurst activityMyelinated axonsMammalian axonsAxonsPeripheral connectionsMembrane depolarizationBasement membraneK channelsRegenerated fibersAxon maturationFine structure of regenerated ependyma and spinal cord in Sternarchus albifrons
Anderson M, Waxman S, Laufer M. Fine structure of regenerated ependyma and spinal cord in Sternarchus albifrons. The Anatomical Record 1983, 205: 73-83. PMID: 6837937, DOI: 10.1002/ar.1092050110.Peer-Reviewed Original ResearchConceptsDense-core vesiclesEpendymal cellsRegenerated cordSpinal cordCell bodiesNumerous dense-cored vesiclesSternarchus albifronsNormal cordCentral canalFibrous astrocytesMyelinated axonsCordElectromotor neuronsEpendymal layerVentral portionRegenerated spinal cordMeningeal layersNeuritesBasal laminaExtracellular spaceAdditional cellsCellsCell processesCell cytoplasmEpendymal tubeELECTROPHYSIOLOGY OF CONDUCTION IN MAMMALIAN REGENERATING NERVES11This work was supported in part by the Veterans Administration and by grants from the National Institutes of Health and the National Multiple Sclerosis Society.
Kocsis J, Waxman S. ELECTROPHYSIOLOGY OF CONDUCTION IN MAMMALIAN REGENERATING NERVES11This work was supported in part by the Veterans Administration and by grants from the National Institutes of Health and the National Multiple Sclerosis Society. 1983, 89-107. DOI: 10.1016/b978-0-12-635120-0.50010-2.Peer-Reviewed Original ResearchMyelinated axonsAction potentialsNational Multiple Sclerosis SocietyMultiple Sclerosis SocietyIntra-axonal recordingsEarly regenerating fibersNormal myelinated axonsRegenerating fibersPharmacological blockageBurst activityPotassium conductanceAxonsVeterans AdministrationNational InstituteRegenerated fibersRepolarizationFunctional organizationIonic channelsRatsAdministrationMyelin
1982
Rat optic nerve: Freeze-fracture studies during development of myelinated axons
Black J, Foster R, Waxman S. Rat optic nerve: Freeze-fracture studies during development of myelinated axons. Brain Research 1982, 250: 1-20. PMID: 7139310, DOI: 10.1016/0006-8993(82)90948-9.Peer-Reviewed Original ResearchConceptsOptic nerveInternodal axolemmaOptic nerve fibersRat optic nerveGreater mean particle sizeNon-myelinated axonsDays of ageEnsheathed axonsGlial ensheathmentNerve fibersMyelinated fibersDays postnatalNerveMyelinated axonsDays postparturitionAge groupsAxonsDefinitive associationAdult fibersAdult animalsMyelinationInternodal membraneCompact myelinFreeze-fracture studyAxolemma
1980
Absence of potassium conductance in central myelinated axons
Kocsis J, Waxman S. Absence of potassium conductance in central myelinated axons. Nature 1980, 287: 348-349. PMID: 7421994, DOI: 10.1038/287348a0.Peer-Reviewed Original ResearchConceptsCentral myelinated axonsMyelinated axonsAction potentialsPotassium conductanceDorsal column axonsVoltage-clamp experimentsLate outward currentOutward currentsAxonsSodium ion permeabilityLate increaseDepolarization phasePotassium permeabilityAxonal membraneRepolarizationMyelinInitial increaseVoltage-dependent changesSodium inactivationDemyelinationPrevious studies
1976
Ultrastructure of visual callosal axons in the rabbit
Waxman S, Swadlow H. Ultrastructure of visual callosal axons in the rabbit. Experimental Neurology 1976, 53: 115-127. PMID: 964332, DOI: 10.1016/0014-4886(76)90287-9.Peer-Reviewed Original ResearchMorphology and physiology of visual callosal axons: evidence for a supernormal period in central myelinated axons
Waxman S, Swadlow H. Morphology and physiology of visual callosal axons: evidence for a supernormal period in central myelinated axons. Brain Research 1976, 113: 179-187. PMID: 953725, DOI: 10.1016/0006-8993(76)90017-2.Peer-Reviewed Original Research
1968
Micropinocytotic invaginations in the axolemma of peripheral nerves
Waxman S. Micropinocytotic invaginations in the axolemma of peripheral nerves. Cell And Tissue Research 1968, 86: 571-573. PMID: 5707296, DOI: 10.1007/bf00324867.Peer-Reviewed Original Research