1998
Novel splice variants of the voltage-sensitive sodium channel alpha subunit
Oh Y, Waxman S. Novel splice variants of the voltage-sensitive sodium channel alpha subunit. Neuroreport 1998, 9: 1267-1272. PMID: 9631410, DOI: 10.1097/00001756-199805110-00002.Peer-Reviewed Original ResearchMeSH KeywordsAlternative SplicingAmino Acid SequenceAnimalsAnimals, NewbornAstrocytesAstrocytomaBrainBucladesineCalcimycinCells, CulturedGenetic VariationMacromolecular SubstancesModels, MolecularMolecular Sequence DataPolymerase Chain ReactionProtein ConformationRatsRats, Sprague-DawleySodium ChannelsSpinal CordUp-RegulationConceptsChannel alpha subunitNeuroblastoma cellsSpinal cord astrocytesB104 neuroblastoma cellsCultured rat astrocytesChannel mRNA expressionNovel splice variantSplice variantsSodium channel alpha subunitAlpha-subunit mRNASpinal cordCerebral astrocytesUnique regulatory pathwaysAlpha subunitRat astrocytesAstrocytesMRNA expressionSubunit mRNAsMicroM A23187Dibutyryl cAMPPremature truncationCellsExpressionRegulatory pathwaysCordResistance to anoxic injury in the dorsal columns of adult rat spinal cord following demyelination
Imaizumi T, Kocsis J, Waxman S. Resistance to anoxic injury in the dorsal columns of adult rat spinal cord following demyelination. Brain Research 1998, 779: 292-296. PMID: 9473700, DOI: 10.1016/s0006-8993(97)01171-2.Peer-Reviewed Original ResearchConceptsCompound action potentialDorsal columnsSpinal cordAction potentialsWhite matterSpinal cord dorsal columnAdult rat spinal cordAdult spinal cordRat spinal cordMin of reoxygenationAdult white matterAction potential conductionControl ratsFocal demyelinationAnoxic injurySupramaximal stimulationOnset of anoxiaAdult ratsDemyelinationPotential conductionCordX-irradiationRatsGreater recoveryOnset
1997
Pharmacological Characterization of Na+ Influx via Voltage-Gated Na+ Channels in Spinal Cord Astrocytes
Rose C, Ransom B, Waxman S. Pharmacological Characterization of Na+ Influx via Voltage-Gated Na+ Channels in Spinal Cord Astrocytes. Journal Of Neurophysiology 1997, 78: 3249-3258. PMID: 9405543, DOI: 10.1152/jn.1997.78.6.3249.Peer-Reviewed Original ResearchConceptsSpinal cordChannel inactivationCultured spinal cordSpinal cord astrocytesEffect of veratridineSodium-binding benzofuranMicroM tetrodotoxinPharmacological characterizationAgonist kainatePharmacological inhibitionTetrodotoxinAstrocytesVeratridineCordMembrane depolarizationKainateImportant functional roleInfluxFunctional roleInhibitionCellsProminent pathwayATPase activityInactivationBaselineRegulation of Na+ channel β1 and β2 subunit mRNA levels in cultured rat astrocytes
Oh Y, Lee Y, Waxman S. Regulation of Na+ channel β1 and β2 subunit mRNA levels in cultured rat astrocytes. Neuroscience Letters 1997, 234: 107-110. PMID: 9364509, DOI: 10.1016/s0304-3940(97)00694-0.Peer-Reviewed Original ResearchConceptsReverse transcription-polymerase chain reactionMRNA levelsSpinal cordCompetitive reverse transcription-polymerase chain reactionQuantitative competitive reverse transcription-polymerase chain reactionSpinal cord astrocytesRat optic nerveDibutyryl cAMPBeta 2 mRNACultured rat astrocytesTranscription-polymerase chain reactionBeta 1 mRNASubunit mRNA levelsNeuroblastoma cell linesOptic nerveChannel β1Cultured astrocytesRat astrocytesCalcium ionophoreAstrocytesBeta 1Chain reactionCell linesCordMRNASpinal Cord Repair: Progress Towards a Daunting Goal
Waxman S, Kocsis J. Spinal Cord Repair: Progress Towards a Daunting Goal. The Neuroscientist 1997, 3: 263-269. DOI: 10.1177/107385849700300414.Peer-Reviewed Original ResearchSpinal cord repairSpinal cordHuman spinal cord injuryUse of neurotrophinsSpinal cord injuryMyelin-forming glial cellsSpinal cord tractsFunctional recoveryNerve graftsAnatomical repairCord injuryGlial cellsAnimal modelsWhite matterGray matterClinical goalsCordInjuryPartial restorationRepairDaunting goalTransplantationNeurotrophinsGraftCNS
1996
Manipulation of the delayed rectifier Kv1.5 potassium channel in glial cells by antisense oligodeoxynucleotides
Roy M, Saal D, Perney T, Sontheimer H, Waxman S, Kaczmarek L. Manipulation of the delayed rectifier Kv1.5 potassium channel in glial cells by antisense oligodeoxynucleotides. Glia 1996, 18: 177-184. PMID: 8915650, DOI: 10.1002/(sici)1098-1136(199611)18:3<177::aid-glia2>3.0.co;2-x.Peer-Reviewed Original ResearchConceptsGlial cellsKv1.5 channel proteinSpinal cordKv1.5 proteinCultured spinal cordTEA-insensitive currentSpinal cord astrocytesRectifier current densityPotassium channel typesAntisense oligodeoxynucleotide treatmentKv1.5 potassium channelAdult ratsCerebellar slicesChannel proteinsAstrocytesOligodeoxynucleotide treatmentPotassium channelsRectifier currentEndfoot processesSuch treatmentCurrent activationAntisense oligodeoxynucleotidesCordCellsTreatmentExpression of mRNA for a sodium channel in subfamily 2 in spinal sensory neurons
Waxman S, Black J. Expression of mRNA for a sodium channel in subfamily 2 in spinal sensory neurons. Neurochemical Research 1996, 21: 395-401. PMID: 8734431, DOI: 10.1007/bf02527702.Peer-Reviewed Original ResearchConceptsDorsal root gangliaSpinal sensory neuronsSchwann cellsDRG neuronsSensory neuronsRat dorsal root gangliaSodium channelsΒ1 subunitExpression of mRNARoot gangliaSpinal cordSitu hybridization cytochemistryNeuronsΑ-subunitAntisense riboprobesBlot analysisType IMRNACellsExpressionHigh levelsGangliaRNA blot analysisHippocampusCord
1994
Type II sodium channels in spinal cord astrocytes in situ: Immunocytochemical observations
Black J, Westenbroek R, Ransom B, Catterall W, Waxman S. Type II sodium channels in spinal cord astrocytes in situ: Immunocytochemical observations. Glia 1994, 12: 219-227. PMID: 7851989, DOI: 10.1002/glia.440120307.Peer-Reviewed Original ResearchConceptsAdult rat spinal cordRat spinal cordOptic nerveSubtype-specific sequencesSpinal cordVentral funiculusSpinal cord white matter tractsSpinal cord white matterSodium channelsSpinal cord astrocytesCord white matterWhite matter tractsType ISodium channel alphaWhite matterAstrocytesNerveImmunocytochemical methodsCordChannel alphaSodium channel IIIsoform expressionDetectable labelingType II sodium channelsImmunocytochemical observations
1991
Non-synaptic mechanisms of Ca2+-mediated injury in CNS white matter
Waxman S, Ransom B, Stys P. Non-synaptic mechanisms of Ca2+-mediated injury in CNS white matter. Trends In Neurosciences 1991, 14: 461-468. PMID: 1722366, DOI: 10.1016/0166-2236(91)90046-w.Peer-Reviewed Original Research
1988
Temporary adhesions between axons and myelin-forming processes
Sims T, Gilmore S, Waxman S. Temporary adhesions between axons and myelin-forming processes. Brain Research 1988, 40: 223-232. DOI: 10.1016/0165-3806(88)90134-4.Peer-Reviewed Original ResearchSchwann cellsSpinal cordMyelin formationIntraspinal Schwann cellsLumbosacral spinal cordSchwann cell processesMyelination of axonsDorsal funiculusGlial populationsNormal animalsGlial processesAxonsJunctional complexesMarked reductionRat undergoesCordMyelinationInitial contactOligodendrocyte processesAxolemmaPresent studyCellsCell processesEarly stagesSequence of events
1987
Molecular differentiation of neurons from ependyma-derived cells in tissue cultures of regenerating teleost spinal cord
Anderson M, Waxman S, Lee Y, Eng L. Molecular differentiation of neurons from ependyma-derived cells in tissue cultures of regenerating teleost spinal cord. Brain Research 1987, 2: 131-136. PMID: 3113659, DOI: 10.1016/0169-328x(87)90006-4.Peer-Reviewed Original ResearchConceptsTeleost spinal cordSpinal cordCell somataNon-phosphorylated neurofilament proteinMolecular differentiationAnti-neurofilament antibodiesRegenerated cordSMI-32Ependymal cellsRostral areasCordNeurofilament proteinDifferentiated neuronsNeuronal morphologyMonoclonal antibodiesNeuronsEpendymal tubeSomaAntibodiesCellsSeries of culturesMolecular architectureTissue culture
1986
Effects of delayed myelination by oligodendrocytes and Schwann cells on the macromolecular structure of axonal membrane in rat spinal cord
Black J, Waxman S, Sims T, Gilmore S. Effects of delayed myelination by oligodendrocytes and Schwann cells on the macromolecular structure of axonal membrane in rat spinal cord. Brain Cell Biology 1986, 15: 745-761. PMID: 3819778, DOI: 10.1007/bf01625192.Peer-Reviewed Original ResearchConceptsDorsal funiculusSpinal cordSchwann cellsMyelin sheathAxonal membraneControl spinal cordsLumbosacral spinal cordSchwann cell ensheathmentRat spinal cordThin myelin sheathsDorsal spinal rootsDays of ageVoltage-sensitive sodium channelsSubsequent myelinationSpinal rootsMyelinated fibersLarge axonsCordMyelinationOligodendrocytesFuniculusSodium channelsIMP densityE-face intramembranous particlesInternodal axolemma
1985
Generation of electromotor neurons in Sternarchus albifrons: Differences between normally growing and regenerating spinal cord
Waxman S, Anderson M. Generation of electromotor neurons in Sternarchus albifrons: Differences between normally growing and regenerating spinal cord. Developmental Biology 1985, 112: 338-344. PMID: 4076546, DOI: 10.1016/0012-1606(85)90404-x.Peer-Reviewed Original ResearchNeurogenesis in Adult Vertebrate Spinal Cord in Situ and in Vitro: A New Model Systema
ANDERSON M, WAXMAN S. Neurogenesis in Adult Vertebrate Spinal Cord in Situ and in Vitro: A New Model Systema. Annals Of The New York Academy Of Sciences 1985, 457: 213-233. PMID: 3913365, DOI: 10.1111/j.1749-6632.1985.tb20807.x.Peer-Reviewed Original ResearchConceptsSpinal cordEpendymal cellsNeuron-specific monoclonal antibodiesSpinal cord tissueSternarchus albifronsStudy of neurogenesisFunctional recoveryNew neuronsCord tissuePositive stainingRecent studiesCultured neuronsCordInjuryNeurogenesisMonoclonal antibodiesNeuronal differentiationNormal morphologic structureCNSExplant culturesNeuronsVertebrate spinal cordSternarchusNew spinal cordNeuronal identityRetrograde labeling of regenerated electromotor neurons with HRP in a teleost fish, Sternarchus albifrons: Relation to cell death
Anderson M, Fong H, Waxman S. Retrograde labeling of regenerated electromotor neurons with HRP in a teleost fish, Sternarchus albifrons: Relation to cell death. Cell And Tissue Research 1985, 241: 237-240. PMID: 2411410, DOI: 10.1007/bf00217166.Peer-Reviewed Original ResearchConceptsCorrect target areaElectromotor neuronsRetrograde labelingCell deathSelective neuronal deathSternarchus albifronsSubsequent cell deathNeuronal deathSpinal cordAxonal projectionsEctopic neuronsSelective cell deathTeleost fishImplantation sitesEctopic cellsNeuronsAxonsDeathCordAlbifronsTarget areaHorseradish peroxidaseDorsal-ventral differences in the glia limitans of the spinal cord: an ultrastructural study in developing normal and irradiated rats.
Sims T, Gilmore S, Waxman S, Klinge E. Dorsal-ventral differences in the glia limitans of the spinal cord: an ultrastructural study in developing normal and irradiated rats. Journal Of Neuropathology & Experimental Neurology 1985, 44: 415-29. PMID: 4009209, DOI: 10.1097/00005072-198507000-00005.Peer-Reviewed Original ResearchConceptsLumbosacral spinal cordGlia limitansDays postnatalSpinal cordSubpial astrocytesRat lumbosacral spinal cordRadial glial processesDorsal-ventral differencesDorsal funiculusNormal ratsVentral surfaceSchwann cellsPostnatal ratsRadial gliaGlial processesRatsAstrocytesCordUltrastructural studyGreater numberLimitansNormal developmentGreater degreeGliaPostnatalPerinodal astrocytic processes at nodes of ranvier in developing normal and glial cell deficient rat spinal cord
Sims T, Waxman S, Black J, Gilmore S. Perinodal astrocytic processes at nodes of ranvier in developing normal and glial cell deficient rat spinal cord. Brain Research 1985, 337: 321-331. PMID: 4027576, DOI: 10.1016/0006-8993(85)90069-1.Peer-Reviewed Original ResearchConceptsPerinodal astrocytic processesLumbar spinal cordSpinal cordGlial cellsAstrocytic processesNodes of RanvierThird postnatal dayRat spinal cordSpinal cord axonsIrradiated spinal cordStages of myelinationAstrocyte involvementVentral funiculusNeuronal elementsPostnatal dayOligodendrocyte populationCentral myelinCordAstrocytesProfound reductionMyelin sheathAxonsRatsNodal axolemmaPresumptive roleNeurogenesis in tissue cultures of adult teleost spinal cord.
Anderson M, Waxman S. Neurogenesis in tissue cultures of adult teleost spinal cord. Brain Research 1985, 352: 203-12. PMID: 4027666, DOI: 10.1016/0165-3806(85)90107-5.Peer-Reviewed Original ResearchNeurogenesis in tissue cultures of adult teleost spinal cord
Anderson M, Waxman S. Neurogenesis in tissue cultures of adult teleost spinal cord. Brain Research 1985, 20: 203-212. DOI: 10.1016/0165-3806(85)90107-5.Peer-Reviewed Original ResearchGlial proliferation in the irradiated rat spinal cord
Sims T, Waxman S, Gilmore S. Glial proliferation in the irradiated rat spinal cord. Acta Neuropathologica 1985, 68: 169-172. PMID: 4072625, DOI: 10.1007/bf00688641.Peer-Reviewed Original ResearchConceptsSpinal cordRat spinal cordPost-irradiation intervalsGlial proliferationIncorporation of3H-thymidineGlial cellsAdjacent thin sectionsWhite matterThick plastic sectionsCell bodiesMyelin sheathVentral halfCordOf3H-thymidineAstrogliaIrregular outlinePresent studyMitotic cellsCellsPlastic sectionsBundles of filamentsRatsMyelinationOligodendrocytes