2015
Contactin-1 and Neurofascin-155/-186 Are Not Targets of Auto-Antibodies in Multifocal Motor Neuropathy
Doppler K, Appeltshauser L, Krämer HH, Ng JK, Meinl E, Villmann C, Brophy P, Dib-Hajj SD, Waxman SG, Weishaupt A, Sommer C. Contactin-1 and Neurofascin-155/-186 Are Not Targets of Auto-Antibodies in Multifocal Motor Neuropathy. PLOS ONE 2015, 10: e0134274. PMID: 26218529, PMCID: PMC4517860, DOI: 10.1371/journal.pone.0134274.Peer-Reviewed Original ResearchConceptsMultifocal motor neuropathyMotor neuropathyContactin-1Neurofascin 155Multifocal motor neuropathy patientsChronic inflammatory demyelinating polyneuropathyInflammatory demyelinating polyneuropathySubgroup of patientsNeurofascin-186Enzyme-linked immunosorbentHuman embryonic kidney 293 cellsDemyelinating polyneuropathyAuto antibodiesEmbryonic kidney 293 cellsMuscle weaknessNeuropathy patientsPatient seraConduction blockParanodal proteinsNeuropathyPatientsKidney 293 cellsIgMSerumDifferent assays
2005
22 Neuronal Blocking Factors in Demyelinating Diseases
Cummins T, Waxman S. 22 Neuronal Blocking Factors in Demyelinating Diseases. 2005, 317-326. DOI: 10.1016/b978-012738761-1/50023-7.Peer-Reviewed Original ResearchVoltage-gated sodium channelsGuillain-Barré syndromeMultiple sclerosisSodium channelsChronic inflammatory demyelinating polyneuropathyInflammatory demyelinating polyneuropathyInflammatory demyelinating diseaseBlocking factorsDemyelinating polyneuropathyDemyelinating diseaseClinical deficitsAxonal degenerationInflammatory diseasesConduction blockSodium currentNitric oxideExperimental modelDiseaseImpulse transmissionSclerosisBiological toxinsDemyelinationFactorsPolyneuropathyCytokines6 The Conduction Properties of Demyelinated and Remyelinated Axons
Smith K, Waxman S. 6 The Conduction Properties of Demyelinated and Remyelinated Axons. 2005, 85-100. DOI: 10.1016/b978-012738761-1/50007-9.Peer-Reviewed Original ResearchRestoration of conductionConduction blockDemyelination-induced conduction blockExperimental demyelinating lesionsDemyelinating lesionsSegmental demyelinationMyelin thinningDemyelinated axonsElectrophysiological featuresConduction failureAxonal functionElectrophysiological propertiesDemyelinationAxonsMyelinLesionsIon channel populationsDemyelinated membraneChannel populationsAdaptive responseComplete loss
2004
Chapter 5 Electrophysiologic Consequences of Myelination
Waxman S, Bangalore L. Chapter 5 Electrophysiologic Consequences of Myelination. 2004, 117-141. DOI: 10.1016/b978-012439510-7/50058-9.Peer-Reviewed Original ResearchImpulse conductionConduction abnormalitiesDemyelinated axonsRole of demyelinationRestoration of conductionTotal conduction blockNew therapeutic interventionsHigh-frequency trainsEntire myelin sheathMyelin lossClinical deficitsElectrophysiologic consequencesConduction blockPharmacological modulationConduction velocityTherapeutic interventionsAction potentialsDemyelinationMyelin sheathAxonsMolecular substratesSymptom productionAxonal membraneAbnormalitiesCurrent strategies
2000
Experimental Approaches to Restoration of Function of Ascending and Descending Axons in Spinal Cord Injury
Waxman S, Kocsis J. Experimental Approaches to Restoration of Function of Ascending and Descending Axons in Spinal Cord Injury. Contemporary Neuroscience 2000, 215-239. DOI: 10.1007/978-1-59259-200-5_10.Peer-Reviewed Original ResearchSpinal cord injuryRestoration of functionCord injuryDemyelinated spinal cord axonsSpinal cord traumaResult of demyelinationSpinal cord axonsSubpopulation of axonsNormal action potentialCord traumaResidual axonsAxonal conductionSpinal cordConduction blockDescending axonsSCI researchAction potentialsAxonsDemyelinationInjurySignificant factor
1998
Transplanted Olfactory Ensheathing Cells Remyelinate and Enhance Axonal Conduction in the Demyelinated Dorsal Columns of the Rat Spinal Cord
Imaizumi T, Lankford K, Waxman S, Greer C, Kocsis J. Transplanted Olfactory Ensheathing Cells Remyelinate and Enhance Axonal Conduction in the Demyelinated Dorsal Columns of the Rat Spinal Cord. Journal Of Neuroscience 1998, 18: 6176-6185. PMID: 9698311, PMCID: PMC2605360, DOI: 10.1523/jneurosci.18-16-06176.1998.Peer-Reviewed Original ResearchConceptsDorsal column axonsRat spinal cordSpinal cordRemyelinated axonsDorsal columnsAdult rat spinal cordExtent of remyelinationTransplantation of OECsSpinal cord lesionsCell injection siteQuantitative histological analysisFunctional remyelinationCord lesionsAxonal conductionNeonatal ratsFocal injectionsConduction blockSchwann cellsConduction velocityInjection siteElectrophysiological propertiesAction potentialsAxonsHistological analysisTransplantation
1997
Functional Repair of Myelinated Fibers in the Spinal Cord by Transplantation of Glial Cells
Waxman S, Kocsis J. Functional Repair of Myelinated Fibers in the Spinal Cord by Transplantation of Glial Cells. Altschul Symposia Series 1997, 283-298. DOI: 10.1007/978-1-4615-5949-8_28.Peer-Reviewed Original ResearchConduction velocityMyelinated axonsMyelin sheathNon-myelinated fibresClinical deficitsMyelin damageConduction abnormalitiesDemyelinated axonsSpinal cordGlial cellsMyelinated fibersConduction blockSynaptic terminalsAction potentialsRefractory periodCell bodiesDemyelinated fibersAxonsFunctional repair
1992
Ultrastructural concomitants of anoxic injury and early post-anoxic recovery in rat optic nerve
Waxman S, Black J, Stys P, Ransom B. Ultrastructural concomitants of anoxic injury and early post-anoxic recovery in rat optic nerve. Brain Research 1992, 574: 105-119. PMID: 1638387, DOI: 10.1016/0006-8993(92)90806-k.Peer-Reviewed Original ResearchConceptsOptic nerveRat optic nerveMin of anoxiaPost-anoxic recoveryAnoxic injuryAstrocyte processesMyelin sheathLoss of microtubulesCell-mediated damageCNS white matterInflux of calciumLarge-diameter axonsPrevious electrophysiological studiesAction potential conductionWhite matter tractsNodes of RanvierAnoxic insultUltrastructure of axonsGlial cellsVesicular degenerationConduction blockEarly recoveryElectrophysiological studiesNerveSignificant injury
1980
Pathophysiology of nerve conduction: relation to diabetic neuropathy.
WAXMAN S. Pathophysiology of nerve conduction: relation to diabetic neuropathy. Annals Of Internal Medicine 1980, 92: 297-301. PMID: 6243892, DOI: 10.7326/0003-4819-92-2-297.Peer-Reviewed Original ResearchConceptsTotal conduction blockProximal-distal gradientClinicopathologic aspectsDiabetic neuropathyClinical deficitsElectrophysiologic variablesNerve diseasePathophysiologic mechanismsNerve conductionConduction blockPathologic basisConduction velocityImpulse conductionTopographic patternsTemporal dispersionNeuropathyNerveDysfunctionPathophysiologyLesionsDisease
1976
Probability of conduction deficit as related to fiber length in random-distribution models of peripheral neuropathies
Waxman S, Brill M, Geschwind N, Sabin T, Lettvin J. Probability of conduction deficit as related to fiber length in random-distribution models of peripheral neuropathies. Journal Of The Neurological Sciences 1976, 29: 39-53. PMID: 181541, DOI: 10.1016/0022-510x(76)90079-4.Peer-Reviewed Original ResearchConceptsPeripheral neuropathyAxonal dysfunctionSensory deficitsDistal sensory deficitsNormal sensory conductionRapid clinical progressionConduction deficitsSensory conductionClinical progressionNerve fibersConduction blockNeuropathyDysfunctionMarked reductionProximodistal gradientPossible correlatesDeficitsSmall increaseParesthesiaeAbnormalitiesProgression