1998
Axon Conduction and Survival in CNS White Matter During Energy Deprivation: A Developmental Study
Fern R, Davis P, Waxman S, Ransom B. Axon Conduction and Survival in CNS White Matter During Energy Deprivation: A Developmental Study. Journal Of Neurophysiology 1998, 79: 95-105. PMID: 9425180, DOI: 10.1152/jn.1998.79.1.95.Peer-Reviewed Original ResearchConceptsAnoxia/aglycemiaCompound action potentialWithdrawal of oxygenOptic nerveCNS white matterWhite matterIsolated rat optic nerveEvoked compound action potentialAdult optic nerveOptic nerve functionRat optic nervePostnatal day 10Permanent lossMin of glucoseEnergy deprivationWithdrawal of glucoseGlucose withdrawalNerve functionAstrocytic glycogenAxon conductionHeightened metabolic activityAdult ratsAglycemiaIrreversible injuryNerveResistance to anoxic injury in the dorsal columns of adult rat spinal cord following demyelination
Imaizumi T, Kocsis J, Waxman S. Resistance to anoxic injury in the dorsal columns of adult rat spinal cord following demyelination. Brain Research 1998, 779: 292-296. PMID: 9473700, DOI: 10.1016/s0006-8993(97)01171-2.Peer-Reviewed Original ResearchConceptsCompound action potentialDorsal columnsSpinal cordAction potentialsWhite matterSpinal cord dorsal columnAdult rat spinal cordAdult spinal cordRat spinal cordMin of reoxygenationAdult white matterAction potential conductionControl ratsFocal demyelinationAnoxic injurySupramaximal stimulationOnset of anoxiaAdult ratsDemyelinationPotential conductionCordX-irradiationRatsGreater recoveryOnset
1995
Endogenous GABA attenuates CNS white matter dysfunction following anoxia
Fern R, Waxman S, Ransom B. Endogenous GABA attenuates CNS white matter dysfunction following anoxia. Journal Of Neuroscience 1995, 15: 699-708. PMID: 7823173, PMCID: PMC6578328, DOI: 10.1523/jneurosci.15-01-00699.1995.Peer-Reviewed Original ResearchConceptsCompound action potentialEffect of GABAWhite matterEndogenous GABA releaseNerve fiber injuryGABA-B antagonistRelease of GABACAP recoveryGABA-B receptorsCNS white matterPertussis toxin treatmentWhite matter dysfunctionGABA-A agonistHigh agonist concentrationsReceptor/G-proteinControl conditionG proteinsPresence of GABAMin of anoxiaMM nipecotic acidFiber injuryGABA releaseReceptor blockadeOptic nerveEndogenous GABA
1994
Anoxic injury of rat optic nerve: ultrastructural evidence for coupling between Na+ influx and Ca2+-mediated injury in myelinated CNS axons
Waxman S, Black J, Ransom B, Stys P. Anoxic injury of rat optic nerve: ultrastructural evidence for coupling between Na+ influx and Ca2+-mediated injury in myelinated CNS axons. Brain Research 1994, 644: 197-204. PMID: 8050031, DOI: 10.1016/0006-8993(94)91680-2.Peer-Reviewed Original ResearchConceptsOptic nerveOptic nerve axonsRat optic nerveNerve axonsBrain slice chamberCompound action potentialLoss of cristaeMicroM tetrodotoxinAnoxic injuryNormoxic controlsNerveAstrocyte processesPerinodal astrocyte processesWhite matterMyelinated axonsAstrocytic processesCNS axonsTetrodotoxinAction potentialsSlice chamberAxonsLoss of microtubulesCytoskeletal damageInjuryNormoxic conditions
1992
Ionic mechanisms of anoxic injury in mammalian CNS white matter: role of Na+ channels and Na(+)-Ca2+ exchanger
Stys P, Waxman S, Ransom B. Ionic mechanisms of anoxic injury in mammalian CNS white matter: role of Na+ channels and Na(+)-Ca2+ exchanger. Journal Of Neuroscience 1992, 12: 430-439. PMID: 1311030, PMCID: PMC6575619, DOI: 10.1523/jneurosci.12-02-00430.1992.Peer-Reviewed Original ResearchConceptsRat optic nerveCompound action potentialAnoxic injuryOptic nerveWhite matterAction potentialsCentral white matter tractsWhite matter injuryCNS white matterMembrane depolarizationAnoxia/ischemiaWhite matter tractsCNS protectionAnoxic insultMyelinated tractsChannel blockersExchanger blockerIrreversible injuryExtracellular Ca2Mammalian CNSNerveInjuryMore injuriesBlockersFunctional integrity
1991
Na+‐Ca2+ exchanger mediates Ca2+ influx during anoxia in mammalian central nervous system white matter
Stys P, Waxman S, Ransom B. Na+‐Ca2+ exchanger mediates Ca2+ influx during anoxia in mammalian central nervous system white matter. Annals Of Neurology 1991, 30: 375-380. PMID: 1952825, DOI: 10.1002/ana.410300309.Peer-Reviewed Original ResearchConceptsWhite matterIsolated rat optic nerveCentral nervous system white matterNervous system white matterWhite matter injuryRat optic nerveMammalian central nervous systemSevere neurological impairmentCompound action potentialType of injuryCentral nervous systemFunctional recoveryOptic nervePharmacological blockadeNeurological impairmentAnoxic injuryIrreversible injuryNervous systemAction potentialsInjuryInfluxCa2Critical mechanismCellsNerveTea‐sensitive potassium channels and inward rectification in regenerated rat sciatic nerve
Gardon T, Kocsis J, Waxman S. Tea‐sensitive potassium channels and inward rectification in regenerated rat sciatic nerve. Muscle & Nerve 1991, 14: 640-646. PMID: 1922170, DOI: 10.1002/mus.880140707.Peer-Reviewed Original ResearchConceptsCompound action potentialRat sciatic nerveNerve crushRegenerated axonsSciatic nerveRegenerated nervesInward rectificationIntra-axonal recording techniquesAdult rat sciatic nerveTEA-sensitive potassium channelsPotassium channelsRegenerated rat sciatic nerveSucrose gap recordingsSciatic nerve crushPeripheral nerve axonsWhole nerve recordingsIntra-axonal recordingsVoltage-sensitive sodium channelsCrush injuryNormal nervesSensitive relaxationRepetitive stimulationAfterhyperpolarizationGap recordingsNerve recordingsDifferential sensitivity to hypoxia of the peripheral versus central trajectory of primary afferent axons
Utzschneider D, Kocsis J, Waxman S. Differential sensitivity to hypoxia of the peripheral versus central trajectory of primary afferent axons. Brain Research 1991, 551: 136-141. PMID: 1913145, DOI: 10.1016/0006-8993(91)90924-k.Peer-Reviewed Original ResearchConceptsDorsal columnsDorsal rootsAfferent fibersCentral nervous system componentsPrimary afferent fibersSucrose gap chamberAction potential amplitudePrimary afferent axonsCompound action potentialDorsal spinal rootsNervous system componentsAxonal trunksPeripheral nervesSpinal cordSpinal rootsAfferent axonsCNS portionSchwann cellsAdult ratsPotential amplitudeAxon branchesAction potentialsHypoxiaMembrane potential changesMembrane depolarizationCompound action potential of nerve recorded by suction electrode: a theoretical and experimental analysis
Stys P, Ransom B, Waxman S. Compound action potential of nerve recorded by suction electrode: a theoretical and experimental analysis. Brain Research 1991, 546: 18-32. PMID: 1855148, DOI: 10.1016/0006-8993(91)91154-s.Peer-Reviewed Original Research
1990
Anoxic injury of mammalian central white matter: Decreased susceptibility in myelin‐deficient optic nerve
Waxman S, Davis P, Black J, Ransom B. Anoxic injury of mammalian central white matter: Decreased susceptibility in myelin‐deficient optic nerve. Annals Of Neurology 1990, 28: 335-340. PMID: 2241117, DOI: 10.1002/ana.410280306.Peer-Reviewed Original ResearchConceptsCompound action potentialOptic nerveCentral white matterMinutes of anoxiaAction potentialsMD ratsWhite matterMammalian central white matterSupramaximal compound action potentialCompound action potential amplitudeAction potential amplitudeNeonatal optic nerveRat optic nerveControl optic nervesDistinct action potentialsWhite matter tractsUnaffected male littermatesAnoxic injuryMale littermatesDays postnatalNervePotential amplitudeOligodendroglial proliferationEffects of anoxiaAdult patternEffects of polyvalent cations and dihydropyridine calcium channel blockers on recovery of CNS white matter from anoxia
Stys P, Ransom B, Waxman S. Effects of polyvalent cations and dihydropyridine calcium channel blockers on recovery of CNS white matter from anoxia. Neuroscience Letters 1990, 115: 293-299. PMID: 2234507, DOI: 10.1016/0304-3940(90)90471-k.Peer-Reviewed Original ResearchConceptsAnoxic injuryChannel blockersWhite matterMammalian central white matterDihydropyridine calcium channel blockerChannel blockers Mn2Irreversible anoxic injuryCalcium channel blockersCNS white matterCompound action potentialCentral white matterDihydropyridine classOrganic Ca2Inorganic Ca2Extracellular Ca2Action potentialsNerve modelMin periodBlockersInjuryFunctional integrityConventional Ca2Ca2InfluxIntracellular compartments
1987
Physiological effects of 4‐aminopyridine on demyelinated mammalian motor and sensory fibers
Bowe C, Kocsis J, Targ E, Waxman S. Physiological effects of 4‐aminopyridine on demyelinated mammalian motor and sensory fibers. Annals Of Neurology 1987, 22: 264-268. PMID: 2821876, DOI: 10.1002/ana.410220212.Peer-Reviewed Original ResearchConceptsSensory fibersClinical trialsAction potentialsPotassium channel blockadeDorsal root axonsCompound action potentialDorsal spinal rootsSingle action potentialMammalian motorIntrathecal injectionMultiple sclerosisSensory dysfunctionVentral rootsSpinal rootsNeuromuscular disordersSpecific fiber typesElectrophysiological responsesSingle stimulusPhysiological effectsTrialsFiber typesResponseParesthesiaSclerosisDysfunctionPhysiological properties of regenerated rat sciatic nerve following lesions at different postnatal ages
Bowe C, Kocsis J, Waxman S, Hildebrand C. Physiological properties of regenerated rat sciatic nerve following lesions at different postnatal ages. Brain Research 1987, 34: 123-131. DOI: 10.1016/0165-3806(87)90201-x.Peer-Reviewed Original ResearchControl nervesPostnatal ageSciatic nerveRegenerated nervesRegenerated rat sciatic nerveFrequency-following abilityOlder postnatal ageSciatic crush lesionRegenerated sciatic nerveAge 3 weeksCompound action potentialDifferent postnatal agesRat sciatic nerveWhole-nerve responseMonths of ageRelative refractory periodCrush lesionPharmacological blockadeNerve responsesSlight prolongationNerveElectrophysiological propertiesAction potentialsRefractory periodOlder age
1985
Rat optic nerve: Disruption of gliogenesis with 5-azacytidine during early postnatal development
Ransom B, Yamate C, Black J, Waxman S. Rat optic nerve: Disruption of gliogenesis with 5-azacytidine during early postnatal development. Brain Research 1985, 337: 41-49. PMID: 2408709, DOI: 10.1016/0006-8993(85)91607-5.Peer-Reviewed Original ResearchConceptsOptic nerveGlial cellsOptic nerve axonsRat optic nerveCompound action potentialEarly postnatal developmentDays of ageOlder nervesNeonatal treatmentBrain extracellular spaceNeuroglial interactionsElectrophysiological studiesNervePostnatal developmentAction potentialsNerve axonsExcitability propertiesMarked reductionMyelin formationGliogenesisMitotic inhibitorsIonic homeostasisExtracellular spaceAgeAnimalsDifferences between mammalian ventral and dorsal spinal roots in response to blockade of potassium channels during maturation
Bowe C, Kocsis J, Waxman S. Differences between mammalian ventral and dorsal spinal roots in response to blockade of potassium channels during maturation. Proceedings Of The Royal Society B 1985, 224: 355-366. PMID: 2410932, DOI: 10.1098/rspb.1985.0037.Peer-Reviewed Original ResearchConceptsDorsal spinal rootsSensory fibersMammalian motorPotassium channelsSpinal rootsAction potentialsRoot fibersCompound action potentialSingle sensory fibresDorsal root fibersVentral root fibersClasses of axonsIndividual action potentialsPharmacological blockadeVentral rootsYoung rootsSensory axonsWhole nervePotassium conductanceAxon responsesCourse of maturationBlockadeAxonsRoots resultsDifferential sensitivityLigature‐induced injury in peripheral nerve: Electrophysiological observations on changes in action potential characteristics following blockade of potassium conductance
Waxman S, Kocsis J, Eng D. Ligature‐induced injury in peripheral nerve: Electrophysiological observations on changes in action potential characteristics following blockade of potassium conductance. Muscle & Nerve 1985, 8: 85-92. PMID: 2414652, DOI: 10.1002/mus.880080202.Peer-Reviewed Original ResearchConceptsAction potentialsRepetitive firingSingle stimulusPotassium channelsCompound action potentialRat sciatic nerveAction potential propertiesWhole-nerve responseAction potential characteristicsIntra-axonal recordingsAction potential waveformNerve segmentsSciatic nerveNerve responsesPeripheral nervesInjury siteMyelinated fibersLater spikesElectrophysiological observationsNerveRefractory periodFiring patternsPotassium conductancePotential waveformInitial spike
1982
Regenerating mammalian nerve fibres: changes in action potential waveform and firing characteristics following blockage of potassium conductance
Kocsis J, Waxman S, Hildebrand C, Ruiz J. Regenerating mammalian nerve fibres: changes in action potential waveform and firing characteristics following blockage of potassium conductance. Proceedings Of The Royal Society B 1982, 217: 77-87. PMID: 6131423, DOI: 10.1098/rspb.1982.0095.Peer-Reviewed Original ResearchConceptsRegenerating axonsNerve fibersFiring propertiesAction potentialsPotassium conductancePotassium channelsCompound action potentialSciatic nerve fibersEarly regenerating axonsAction potential waveformRat nerve fibresMammalian nerve fibresDemyelinated axonsMyelinated fibersExtracellular applicationAxonsRecording techniquesSingle stimulusFiring characteristicsPotential waveformPresent studyRat optic nerve: Electrophysiological, pharmacological and anatomical studies during development
Foster R, Connors B, Waxman S. Rat optic nerve: Electrophysiological, pharmacological and anatomical studies during development. Brain Research 1982, 3: 371-386. PMID: 7066695, DOI: 10.1016/0165-3806(82)90005-0.Peer-Reviewed Original ResearchConceptsCompound action potentialAction potentialsConduction velocityOptic nerveOptic nerve axonsShort latency peaksRat optic nerveAxonal membrane propertiesShort-latency componentsSixth postnatal dayOnset of myelinationWeeks of ageRelative refractory periodDays of ageGlial cellsPostnatal dayRefractory periodNerve axonsAxonal diameterLatency componentsCalcium conductanceAxonal sizeMyelinationNerve growthLatency peaks