Featured Publications
Downregulation of hepatic ceruloplasmin ameliorates NAFLD via SCO1-AMPK-LKB1 complex
Xie L, Yuan Y, Xu S, Lu S, Gu J, Wang Y, Wang Y, Zhang X, Chen S, Li J, Lu J, Sun H, Hu R, Piao H, Wang W, Wang C, Wang J, Li N, White M, Han L, Jia W, Miao J, Liu J. Downregulation of hepatic ceruloplasmin ameliorates NAFLD via SCO1-AMPK-LKB1 complex. Cell Reports 2022, 41: 111498. PMID: 36261001, PMCID: PMC10153649, DOI: 10.1016/j.celrep.2022.111498.Peer-Reviewed Original ResearchConceptsNon-alcoholic fatty liver diseaseFatty liver diseaseLipid metabolism diseasesLipid catabolismHepatic lipid catabolismFatty acid oxidationDetectable hepatotoxicityCopper deficiencyNAFLD developmentLiver diseaseMetabolic diseasesMetabolism diseasesNormal levelsDiseaseMitochondrial biogenesisAcid oxidationAMPK activityAMPKAblationDeficiencyCatabolismLKB1Hepatotoxicity
2021
Irs2 deficiency alters hippocampus-associated behaviors during young adulthood
Tanokashira D, Wang W, Maruyama M, Kuroiwa C, White M, Taguchi A. Irs2 deficiency alters hippocampus-associated behaviors during young adulthood. Biochemical And Biophysical Research Communications 2021, 559: 148-154. PMID: 33940386, PMCID: PMC8361845, DOI: 10.1016/j.bbrc.2021.04.101.Peer-Reviewed Original ResearchConceptsYoung adult male miceAdult male miceMale miceAlzheimer's diseaseType 2 diabetes mellitusInsulin-like growth factor-1Brain energy metabolismGrowth factor-1Young adult malesCore body temperatureDiabetes mellitusInsulin resistanceInsulin/insulin-like growth factor-1Risk factorsBehavioral alterationsCognitive impairmentGenetic backgroundPremature deathHippocampusMiceYoung adulthoodAberrant alterationsFactor 1Abnormal changesBody temperature
2019
Phosphorylation of Forkhead Protein FoxO1 at S253 Regulates Glucose Homeostasis in Mice
Zhang K, Guo X, Yan H, Wu Y, Pan Q, Shen J, Li X, Chen Y, Li L, Qi Y, Xu Z, Xie W, Zhang W, Threadgill D, He L, Villarreal D, Sun Y, White M, Zheng H, Guo S. Phosphorylation of Forkhead Protein FoxO1 at S253 Regulates Glucose Homeostasis in Mice. Endocrinology 2019, 160: 1333-1347. PMID: 30951171, PMCID: PMC6482038, DOI: 10.1210/en.2018-00853.Peer-Reviewed Original ResearchConceptsKey phosphorylation sitesForkhead protein FoxO1Protein kinase BTranscription factor forkhead box O1Factor forkhead box O1FOXO1 nuclear localizationMultiple physiological functionsMouse Foxo1Forkhead box O1Pancreatic plasticityPhosphorylation sitesHuman FOXO1Nuclear localizationTarget genesMolecular basisS253Kinase BFoxO1 activityPhysiological functionsGlucose homeostasisBox O1Pancreatic β-cell functionFOXO1PhosphorylationHepatic glucose production
2018
Insulin signaling and reduced glucocorticoid receptor activity attenuate postprandial gene expression in liver
Kalvisa A, Siersbæk M, Præstholm S, Christensen L, Nielsen R, Stohr O, Vettorazzi S, Tuckermann J, White M, Mandrup S, Grøntved L. Insulin signaling and reduced glucocorticoid receptor activity attenuate postprandial gene expression in liver. PLOS Biology 2018, 16: e2006249. PMID: 30532187, PMCID: PMC6301715, DOI: 10.1371/journal.pbio.2006249.Peer-Reviewed Original ResearchConceptsCircadian gene transcriptionGene transcriptionGene expressionCircadian-regulated genesInsulin-regulated genesGenomic approachesGlucocorticoid receptorGene programEnhancer activityCistromic analysisGlucocorticoid receptor activityGenesMechanistic insightsTranscriptionFeeding behaviorSelective disruptionDiet-induced obese animalsEnhancerReceptor activityFeeding responseDiet-induced obesityExpressionDysregulationChromatinFOXO1Inactivating hepatic follistatin alleviates hyperglycemia
Tao R, Wang C, Stöhr O, Qiu W, Hu Y, Miao J, Dong X, Leng S, Stefater M, Stylopoulos N, Lin L, Copps K, White M. Inactivating hepatic follistatin alleviates hyperglycemia. Nature Medicine 2018, 24: 1058-1069. PMID: 29867232, PMCID: PMC6039237, DOI: 10.1038/s41591-018-0048-0.Peer-Reviewed Original ResearchConceptsHepatic glucose productionAdipose tissue insulinGlucose toleranceTissue insulinSuppression of HGPGastric bypass surgeryFed obese miceHepatic insulin resistanceWhite adipose tissuePotential clinical significanceInsulin receptor substrate-1Bypass surgeryGlucose intoleranceHepatic inactivationObese miceInsulin resistanceObese individualsGlycated hemoglobinTranscription factor FOXO1Insulin sensitivityNormal suppressionClinical significanceReceptor substrate-1Adipose tissueExpression of Fst
2017
Endotoxemia-mediated activation of acetyltransferase P300 impairs insulin signaling in obesity
Cao J, Peng J, An H, He Q, Boronina T, Guo S, White M, Cole P, He L. Endotoxemia-mediated activation of acetyltransferase P300 impairs insulin signaling in obesity. Nature Communications 2017, 8: 131. PMID: 28743992, PMCID: PMC5526866, DOI: 10.1038/s41467-017-00163-w.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell Line, TumorE1A-Associated p300 ProteinEndoplasmic Reticulum StressEndotoxemiaGene Expression ProfilingImmunoblottingInsulinInsulin ResistanceLipopolysaccharidesLiverMaleMembrane ProteinsMice, Inbred C57BLMice, ObeseObesityProtein Serine-Threonine KinasesReceptor, InsulinSignal TransductionX-Box Binding Protein 1ConceptsInsulin resistanceP300 acetyltransferase activityHigh-fat diet-fedChronic low-grade inflammationObese ob/ob miceOb/ob miceLow-grade inflammationDiet-induced obesityAcetyltransferase activityElevated plasma concentrationsPromising therapeutic targetCytoplasm of hepatocytesEndoplasmic reticulum stressObese patientsObese miceInsulin sensitivityIntestinal permeabilityOb micePlasma concentrationsDisrupts insulinTherapeutic targetImpairs insulinPharmacological inhibitionGlucose productionObesity
2014
Insulin Receptor Substrates Are Essential for the Bioenergetic and Hypertrophic Response of the Heart to Exercise Training
Riehle C, Wende A, Zhu Y, Oliveira K, Pereira R, Jaishy B, Bevins J, Valdez S, Noh J, Kim B, Moreira A, Weatherford E, Manivel R, Rawlings T, Rech M, White M, Abel E. Insulin Receptor Substrates Are Essential for the Bioenergetic and Hypertrophic Response of the Heart to Exercise Training. Molecular And Cellular Biology 2014, 34: 3450-3460. PMID: 25002528, PMCID: PMC4135616, DOI: 10.1128/mcb.00426-14.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsEnergy MetabolismGene Expression RegulationGlycogenHeartInsulin Receptor Substrate ProteinsMiceMice, Inbred C57BLMice, KnockoutMitochondriaPeroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alphaPhosphatidylinositol 3-KinasesProtein IsoformsSignal TransductionSwimmingTranscription FactorsConceptsInsulin receptor substrate-1IRS isoformsProtein phosphatase 2AReceptor substrate-1Insulin receptor substrateInsulin-like growth factor 1 receptorGrowth factor 1 receptorSynthase kinase-3βPeroxisome proliferator-activated receptor gamma coactivatorPhosphatase 2AProliferator-activated receptor gamma coactivatorFactor 1 receptorPGC-1α protein contentCardiomyocyte-specific deletionDevelopmental regulationProtein contentHypertrophic responseReceptor substrateReceptor gamma coactivatorFatty acid oxidationSubstrate-1Kinase-3βDivergent rolesMetabolic adaptationNonredundant roleAPPL1 Potentiates Insulin Sensitivity by Facilitating the Binding of IRS1/2 to the Insulin Receptor
Ryu J, Galan A, Xin X, Dong F, Abdul-Ghani M, Zhou L, Wang C, Li C, Holmes B, Sloane L, Austad S, Guo S, Musi N, DeFronzo R, Deng C, White M, Liu F, Dong L. APPL1 Potentiates Insulin Sensitivity by Facilitating the Binding of IRS1/2 to the Insulin Receptor. Cell Reports 2014, 7: 1227-1238. PMID: 24813896, PMCID: PMC4380268, DOI: 10.1016/j.celrep.2014.04.006.Peer-Reviewed Original Research
2013
IRS1Ser307 phosphorylation does not mediate mTORC1-induced insulin resistance
Herrema H, Lee J, Zhou Y, Copps K, White M, Ozcan U. IRS1Ser307 phosphorylation does not mediate mTORC1-induced insulin resistance. Biochemical And Biophysical Research Communications 2013, 443: 689-693. PMID: 24333417, PMCID: PMC3926104, DOI: 10.1016/j.bbrc.2013.12.023.Peer-Reviewed Original ResearchConceptsInsulin resistanceGlucose intoleranceInsulin sensitivityImpaired insulin receptorStress-induced insulin resistanceRapamycin complex 1 (mTORC1) activityPhosphorylation of IRS1Endoplasmic reticulum stressDiabetic miceER stress-induced insulin resistanceMammalian targetIRS1 phosphorylationReticulum stressMiceIntoleranceInsulin receptorVivoSer307Chronic activation of a designer Gq-coupled receptor improves β cell function
Jain S, de Azua I, Lu H, White M, Guettier J, Wess J. Chronic activation of a designer Gq-coupled receptor improves β cell function. Journal Of Clinical Investigation 2013, 123: 1750-1762. PMID: 23478411, PMCID: PMC3613926, DOI: 10.1172/jci66432.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell Line, TumorCell ProliferationClozapineDiabetes Mellitus, ExperimentalDrug Evaluation, PreclinicalFemaleGene ExpressionGTP-Binding Protein alpha Subunits, Gq-G11Hypoglycemic AgentsInsulin Receptor Substrate ProteinsInsulin-Secreting CellsMaleMAP Kinase Signaling SystemMiceMice, Inbred C57BLMice, TransgenicMolecular Targeted TherapyMuscarinic AgonistsProtein EngineeringReceptor, Muscarinic M3Receptors, G-Protein-CoupledRecombinant ProteinsConceptsΒ-cell functionΒ-cellsCell functionPancreatic β-cell functionStreptozotocin-induced diabetesBeneficial metabolic effectsTreatment of T2D.High-fat dietType 2 diabetesNovel antidiabetic drugsType G proteinsClasses of receptorsChronic stimulationMetabolic deficitsAntidiabetic drugsMetabolic effectsChronic activationGlucose homeostasisTherapeutic strategiesCell pathwaysEnhanced expressionReceptorsNumerous receptorsCellular effectsDiabetes
2009
Human IL6 enhances leptin action in mice
Sadagurski M, Norquay L, Farhang J, D’Aquino K, Copps K, White M. Human IL6 enhances leptin action in mice. Diabetologia 2009, 53: 525-535. PMID: 19902173, PMCID: PMC2815798, DOI: 10.1007/s00125-009-1580-8.Peer-Reviewed Original ResearchConceptsOb/ob miceWild-type miceOb miceHuman IL6Leptin actionDiet-induced obesityHigh-fat dietLower leptin concentrationsHypothalamic signal transducerCentral leptin actionSystemic inflammationTranscription 3 (STAT3) phosphorylationLeptin injectionInflammatory cytokinesInsulin resistanceLeptin concentrationsFood intakePhysical activityGlucose homeostasisAims/Body weightIL6MiceEnergy expenditureObesityInsulin Receptor Substrate-2 in β-Cells Decreases Diabetes in Nonobese Diabetic Mice
Norquay L, D'Aquino K, Opare-Addo L, Kuznetsova A, Haas M, Bluestone J, White M. Insulin Receptor Substrate-2 in β-Cells Decreases Diabetes in Nonobese Diabetic Mice. Endocrinology 2009, 150: 4531-4540. PMID: 19574401, PMCID: PMC2754683, DOI: 10.1210/en.2009-0395.Peer-Reviewed Original ResearchConceptsNonobese diabetic (NOD) miceBeta-cell destructionNOD miceInsulin receptor substrate 2Glucose toleranceDiabetes incidenceDiabetic miceIslet massAnti-CD3 antibody injectionNondiabetic NOD miceReduced diabetes incidenceRisk of diabetesBeta-cell massType 1 diabetesBetter glucose toleranceAnti-CD3 antibodyBeta-cell growthWk of ageDiabetic NODSevere insulitisOvert diabetesSubstrate 2C57BL/6 miceBeta-cell mitogenesisAntibody injection
2008
Muscle-Specific IRS-1 Ser→Ala Transgenic Mice Are Protected From Fat-Induced Insulin Resistance in Skeletal Muscle
Morino K, Neschen S, Bilz S, Sono S, Tsirigotis D, Reznick RM, Moore I, Nagai Y, Samuel V, Sebastian D, White M, Philbrick W, Shulman GI. Muscle-Specific IRS-1 Ser→Ala Transgenic Mice Are Protected From Fat-Induced Insulin Resistance in Skeletal Muscle. Diabetes 2008, 57: 2644-2651. PMID: 18633112, PMCID: PMC2551673, DOI: 10.2337/db06-0454.Peer-Reviewed Original ResearchMeSH KeywordsAlanineAmino Acid SubstitutionAnimalsBlotting, WesternDietary FatsFemaleGlucose Clamp TechniqueGlucose Tolerance TestImmunoprecipitationInsulinInsulin Receptor Substrate ProteinsInsulin ResistanceMaleMiceMice, Inbred C57BLMice, TransgenicMuscle, SkeletalPhosphorylationSerineTriglyceridesConceptsSerine phosphorylationIRS-1IRS-1-associated phosphatidylinositolSkeletal muscleInsulin-stimulated IRS-1-associated phosphatidylinositolWild-type transgenic miceFat-induced insulin resistanceInsulin receptor substrateTransgenic miceReceptor substrateInsulin signalingAkt phosphorylationPhosphorylationCellular mechanismsCritical roleGlucose uptakeHigh-fat feedingInsulin resistanceMuscle glucose uptakeInsulin actionVivoSerInsulin-stimulated muscle glucose uptakeImportant rolePhosphatidylinositolGenetic Deficiency of Glycogen Synthase Kinase-3β Corrects Diabetes in Mouse Models of Insulin Resistance
Tanabe K, Liu Z, Patel S, Doble B, Li L, Cras-Méneur C, Martinez S, Welling C, White M, Bernal-Mizrachi E, Woodgett J, Permutt M. Genetic Deficiency of Glycogen Synthase Kinase-3β Corrects Diabetes in Mouse Models of Insulin Resistance. PLOS Biology 2008, 6: e37. PMID: 18288891, PMCID: PMC2245985, DOI: 10.1371/journal.pbio.0060037.Peer-Reviewed Original ResearchConceptsBeta-cell massIrs2-/- miceInsulin resistanceMouse modelType 2 diabetes mellitusObese insulin-resistant individualsWhole-body glucose disposalOnset of diabetesPdx1 levelsBeta-cell functionBeta-cell lossInsulin-resistant individualsBeta-cell replicationGSK-3betaBeta-cell proliferationInsulin receptor substrate 2Cyclin-dependent kinase inhibitorDiabetes mellitusDiabetes onsetEarly diabetesPI-3K/Akt pathwayGlucose disposalGSK-3beta activityDiabetesInsulin action
2006
Suppression of Insulin Receptor Substrate 1 (IRS-1) Promotes Mammary Tumor Metastasis
Ma Z, Gibson S, Byrne M, Zhang J, White M, Shaw L. Suppression of Insulin Receptor Substrate 1 (IRS-1) Promotes Mammary Tumor Metastasis. Molecular And Cellular Biology 2006, 26: 9338-9351. PMID: 17030605, PMCID: PMC1698550, DOI: 10.1128/mcb.01032-06.Peer-Reviewed Original ResearchConceptsIRS-1Insulin receptor substrate (IRS) proteinsInsulin receptor substrate-1Wild-type levelsMetastasis suppressor functionReceptor substrate-1Cell surface receptorsBreast cancerSubstrate proteinsCytoplasmic adaptorAkt/mTOR activityMammary tumor metastasisSignificant homologySerine phosphorylationDistinct functionsSubstrate-1Mammary tumorsIRS-2MTOR activitySuppressor functionMetastatic mammary tumorsTumor cellsIR-1Surface receptorsBreast cancer metastasis
2005
Phosphatase and Tensin Homolog Regulation of Islet Growth and Glucose Homeostasis*
Kushner J, Simpson L, Wartschow L, Guo S, Rankin M, Parsons R, White M. Phosphatase and Tensin Homolog Regulation of Islet Growth and Glucose Homeostasis*. Journal Of Biological Chemistry 2005, 280: 39388-39393. PMID: 16170201, DOI: 10.1074/jbc.m504155200.Peer-Reviewed Original ResearchConceptsInsulin/insulin-like growth factorWild typeIrs2 branchBeta-cell growthInsulin-like growth factorPhosphatase PTENGrowth factorFoxO1 phosphorylationBeta-cell massPTEN expressionAktPTENCascadeSmall isletsGlucose homeostasisInsulin productionGrowthIslet growthSufficient insulinPhosphatidylinositolTolerancePhosphorylationMiceSignalingHomeostasisAttenuation of Accumulation of Neointimal Lipid by Pioglitazone in Mice Genetically Deficient in Insulin Receptor Substrate-2 and Apolipoprotein E
Clough M, Schneider D, Sobel B, White M, Wadsworth M, Taatjes D. Attenuation of Accumulation of Neointimal Lipid by Pioglitazone in Mice Genetically Deficient in Insulin Receptor Substrate-2 and Apolipoprotein E. Journal Of Histochemistry & Cytochemistry 2005, 53: 603-610. PMID: 15872053, DOI: 10.1369/jhc.4a6590.2005.Peer-Reviewed Original ResearchMeSH KeywordsAdministration, OralAnimalsAortaApolipoproteins EArteriosclerosisHyperlipidemiasHypoglycemic AgentsInsulin Receptor Substrate ProteinsInsulin ResistanceIntracellular Signaling Peptides and ProteinsLipid MetabolismMiceMice, Inbred C57BLMice, KnockoutPhosphoproteinsPioglitazoneReceptor, InsulinThiazolidinedionesTunica IntimaConceptsInsulin resistanceApolipoprotein EAcute coronary syndromeVulnerable atherosclerotic plaquesInsulin receptor substrate 2Accumulation of lipidsCoronary syndromeProximal aortaInsulin sensitizersNeointimal accumulationAtheroma formationAortic intimaAtherosclerotic lesionsAtherosclerotic plaquesType 2PioglitazoneMiceLesionsCross-sectional areaHeterozygous deficiencyAtherogenesisSubstrate 2TreatmentLipidsAtheromaAlterations in growth and apoptosis of insulin receptor substrate-1-deficient β-cells
Hennige A, Ozcan U, Okada T, Jhala U, Schubert M, White M, Kulkarni R. Alterations in growth and apoptosis of insulin receptor substrate-1-deficient β-cells. AJP Endocrinology And Metabolism 2005, 289: e337-e346. PMID: 15827066, DOI: 10.1152/ajpendo.00032.2004.Peer-Reviewed Original ResearchMeSH KeywordsAdaptation, PhysiologicalAnimalsApoptosisCell ProliferationInsulinInsulin Receptor Substrate ProteinsInsulin ResistanceIntracellular Signaling Peptides and ProteinsIslets of LangerhansIslets of Langerhans TransplantationKidneyMaleMiceMice, Inbred C57BLMice, KnockoutPhosphoproteinsSignal TransductionConceptsInsulin resistanceInsulin receptor substrateWT recipientsInsulin/IGFIRS-1 knockout miceBeta-cell proliferationBeta-cell apoptosisIslet hypoplasiaIRS-2 expressionEndogenous isletsOvert diabetesKidney capsuleIslet responseIslet functionIslet defectKnockout miceMitotic rateCompensatory increaseIslet growthDysfunctional isletsGrowth retardationTransplantation approachesΒ-cellsAntiapoptotic effectIGF
2004
Involvement of Insulin Receptor Substrate 2 in Mammary Tumor Metastasis
Nagle J, Ma Z, Byrne M, White M, Shaw L. Involvement of Insulin Receptor Substrate 2 in Mammary Tumor Metastasis. Molecular And Cellular Biology 2004, 24: 9726-9735. PMID: 15509777, PMCID: PMC525494, DOI: 10.1128/mcb.24.22.9726-9735.2004.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsApoptosisBase SequenceBreast NeoplasmsCell Line, TumorDNA, NeoplasmFemaleHumansInsulin Receptor Substrate ProteinsIntracellular Signaling Peptides and ProteinsMammary Neoplasms, ExperimentalMiceMice, Inbred C57BLMice, KnockoutMice, TransgenicMitosisNeoplasm InvasivenessPhosphoproteinsPhosphorylationConceptsIRS-2Insulin receptor substrate (IRS) proteinsMammary tumor cellsPolyoma virus middle T antigenInsulin receptor substrate 2Middle T antigenGrowth factor deprivationTumor cellsIRS-2 expressionSubstrate proteinsPyV mTMammary tumor metastasisApoptotic stimuliFactor deprivationAdaptor moleculeIncidence of metastasisMitotic cellsMammary fat padMammary tumor progressionBreast cancer metastasisHuman breast cancerSubstrate 2T antigenTumor initiationCancer metastasisDysregulation of insulin receptor substrate 2 in β cells and brain causes obesity and diabetes
Lin X, Taguchi A, Park S, Kushner J, Li F, Li Y, White M. Dysregulation of insulin receptor substrate 2 in β cells and brain causes obesity and diabetes. Journal Of Clinical Investigation 2004, 114: 908-916. PMID: 15467829, PMCID: PMC518668, DOI: 10.1172/jci22217.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBody WeightBrainDiabetes Mellitus, Type 2DietEatingGene DeletionGene Expression RegulationGlucoseHomeostasisHumansHypothalamusInsulinInsulin Receptor Substrate ProteinsInsulin ResistanceIntracellular Signaling Peptides and ProteinsIslets of LangerhansMaleMiceMice, Inbred C57BLMice, KnockoutObesityPhosphoproteinsRandom AllocationSignal TransductionConceptsInsulin receptor substrate 2Beta cellsInsulin resistanceSufficient beta cell functionPancreas beta cellsBeta-cell failureBeta-cell functionFunctional beta cellsMonths of ageAdult beta cellsFat body massSubstrate 2Obese miceDiabetesΒ-cellsObesityPromotes RegenerationConditional knockoutCell functionMiceBrainBody massMolecular linkCell failureCells