Featured Publications
BRD7 improves glucose homeostasis independent of IRS proteins.
Kim Y, Lee J, Han Y, Tao R, White M, Liu R, Park S. BRD7 improves glucose homeostasis independent of IRS proteins. Journal Of Endocrinology 2023, 258 PMID: 37578842, PMCID: PMC10430774, DOI: 10.1530/joe-23-0119.Peer-Reviewed Original ResearchConceptsGlucose homeostasisKnockout miceAlternative insulinObese miceGlucose homeostasis independentGlucose metabolism parametersContext of obesityBlood glucose levelsMetabolism parametersGlucose levelsGlucose metabolismInsulinMiceIRS proteinsInsulin receptorProtein 7ObesityHomeostasisUpregulationBRD7InvolvementPathwayNovel insightsEuglycemiaFindingsTAZ inhibits glucocorticoid receptor and coordinates hepatic glucose homeostasis in normal physiological states
Xu S, Liu Y, Hu R, Wang M, Stöhr O, Xiong Y, Chen L, Kang H, Zheng L, Cai S, He L, Wang C, Copps K, White M, Miao J. TAZ inhibits glucocorticoid receptor and coordinates hepatic glucose homeostasis in normal physiological states. ELife 2021, 10: e57462. PMID: 34622775, PMCID: PMC8555985, DOI: 10.7554/elife.57462.Peer-Reviewed Original ResearchConceptsGluconeogenic gene promotersBinding of GRGene promoterGlucocorticoid receptorGlucose homeostasisLigand-binding domainGlucose productionOverexpression of TAZHepatic glucose homeostasisWW domainsBlood glucose concentrationPhysiological fastingGluconeogenic genesGR response elementResponse elementNovel roleTAZNormal physiological stateGR transactivationPhysiological statePromoterMouse liverPericentral hepatocytesPathological statesGlucose concentration
2021
FoxO1 suppresses Fgf21 during hepatic insulin resistance to impair peripheral glucose utilization and acute cold tolerance
Stöhr O, Tao R, Miao J, Copps K, White M. FoxO1 suppresses Fgf21 during hepatic insulin resistance to impair peripheral glucose utilization and acute cold tolerance. Cell Reports 2021, 34: 108893. PMID: 33761350, PMCID: PMC8529953, DOI: 10.1016/j.celrep.2021.108893.Peer-Reviewed Original ResearchMeSH KeywordsAdaptation, PhysiologicalAdipocytes, BrownAdipose Tissue, BrownAnimalsBlood GlucoseBody WeightCold TemperatureDiet, High-FatFibroblast Growth FactorsForkhead Box Protein O1Gene Expression RegulationGlucoseHomeostasisInsulinInsulin Receptor Substrate ProteinsInsulin ResistanceLipid MetabolismLiverMice, KnockoutOrgan SpecificityOxidation-ReductionThermogenesisConceptsHepatic insulin resistanceInsulin resistanceGlucose utilizationHigher plasma Fgf21 levelsSevere hepatic insulin resistanceFGF21 knockout micePlasma FGF21 levelsPeripheral glucose utilizationInsulin-resistant miceThermogenic gene expressionFGF21 resistancePharmacologic formsFGF21 levelsCold intoleranceFGF21 functionMetabolic healthBAT functionGlucose homeostasisKnockout miceFGF21Adenoviral infectionMiceWeight lossSkeletal muscleAcute cold toleranceInsulin receptor substrate 1, but not IRS2, plays a dominant role in regulating pancreatic alpha cell function in mice
Takatani T, Shirakawa J, Shibue K, Gupta M, Kim H, Lu S, Hu J, White M, Kennedy R, Kulkarni R. Insulin receptor substrate 1, but not IRS2, plays a dominant role in regulating pancreatic alpha cell function in mice. Journal Of Biological Chemistry 2021, 296: 100646. PMID: 33839150, PMCID: PMC8131928, DOI: 10.1016/j.jbc.2021.100646.Peer-Reviewed Original ResearchConceptsAKT Ser/Thr kinaseInsulin receptor substrate (IRS) proteinsSer/Thr kinaseAlpha-cell functionGlobal protein translationCell functionInsulin receptor substrate-1Pancreatic alpha-cell functionDownstream target genesReceptor substrate-1Alpha cellsAlpha-cell lineGlucagon secretionSubstrate proteinsProtein translationTarget genesSubstrate-1Downstream proteinsDominant regulatorPancreatic alpha cellsMitochondrial dysfunctionCognate receptorsIRS2Normal glucose toleranceCell lines
2020
Insulin receptor substrates differentially exacerbate insulin-mediated left ventricular remodeling
Riehle C, Weatherford E, Wende A, Jaishy B, Seei A, McCarty N, Rech M, Shi Q, Reddy G, Kutschke W, Oliveira K, Pires K, Anderson J, Diakos N, Weiss R, White M, Drakos S, Xiang Y, Abel E. Insulin receptor substrates differentially exacerbate insulin-mediated left ventricular remodeling. JCI Insight 2020, 5: e134920. PMID: 32213702, PMCID: PMC7213803, DOI: 10.1172/jci.insight.134920.Peer-Reviewed Original ResearchConceptsTransverse aortic constrictionInsulin receptor substrate-1Left ventricular remodelingHeart failureVentricular remodelingCardiac hypertrophyTAC-induced LV hypertrophyPressure-overload cardiac hypertrophySevere LV dysfunctionInsulin receptor tyrosine kinase activityAkt1 activationReceptor tyrosine kinase activityLV dysfunctionLV hypertrophyWT miceInsulin resistanceLV remodelingAortic constrictionProinflammatory responseProtein kinase GInsulin receptor substrateReceptor substrate-1Kinomic profilingWT controlsTyrosine kinase activity
2018
Hyperglycemia induces vascular smooth muscle cell dedifferentiation by suppressing insulin receptor substrate-1–mediated p53/KLF4 complex stabilization
Xi G, Shen X, Wai C, White M, Clemmons D. Hyperglycemia induces vascular smooth muscle cell dedifferentiation by suppressing insulin receptor substrate-1–mediated p53/KLF4 complex stabilization. Journal Of Biological Chemistry 2018, 294: 2407-2421. PMID: 30578299, PMCID: PMC6378959, DOI: 10.1074/jbc.ra118.005398.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAtherosclerosisCell DifferentiationHumansHyperglycemiaInsulin Receptor Substrate ProteinsInsulin ResistanceKruppel-Like Factor 4Kruppel-Like Transcription FactorsMiceMice, KnockoutMultiprotein ComplexesMuscle, Smooth, VascularMyocytes, Smooth MuscleProtein StabilityProto-Oncogene MasProto-Oncogene Proteins c-mdm2SwineTumor Suppressor Protein p53ConceptsKrüppel-like factor 4Vascular smooth muscle cell dedifferentiationSmooth muscle cell dedifferentiationInsulin receptor substrate-1Muscle cell dedifferentiationNormoglycemic miceAtherosclerotic lesionsHigh glucoseVSMC differentiationInsulin resistance stateP53 levelsIRS-1 knockdownSmooth muscle protein 22P53 associationExpression of p21Cell dedifferentiationMarker protein expressionAccelerates AtherosclerosisNondiabetic pigsDiabetic pigsIRS-1 overexpressionNutlin-3 treatmentMDM2/p53Receptor substrate-1MDM2 proto-oncogeneRho kinase/AMPK axis regulates hepatic lipogenesis during overnutrition
Huang H, Lee S, Sousa-Lima I, Kim S, Hwang W, Dagon Y, Yang W, Cho S, Kang M, Seo J, Shibata M, Cho H, Belew G, Bhin J, Desai B, Ryu M, Shong M, Li P, Meng H, Chung B, Hwang D, Kim M, Park K, Macedo M, White M, Jones J, Kim Y. Rho kinase/AMPK axis regulates hepatic lipogenesis during overnutrition. Journal Of Clinical Investigation 2018, 128: 5335-5350. PMID: 30226474, PMCID: PMC6264719, DOI: 10.1172/jci63562.Peer-Reviewed Original ResearchConceptsNonalcoholic fatty liver diseaseFatty liver diseaseHepatic lipid accumulationLiver diseaseInsulin resistanceRisk factorsNovo lipogenesisObesity-related metabolic disordersLipid accumulationObesity-induced steatosisChronic liver diseaseObese diabetic miceDiet-induced obesityMajor risk factorSevere hepatic steatosisHigh-fat dietDe novo lipogenesisThermogenic gene expressionRho kinase 1Antidiabetes drugsDiabetic miceHepatic steatosisActivation of AMPKHepatocellular carcinomaMetabolic disordersInactivating hepatic follistatin alleviates hyperglycemia
Tao R, Wang C, Stöhr O, Qiu W, Hu Y, Miao J, Dong X, Leng S, Stefater M, Stylopoulos N, Lin L, Copps K, White M. Inactivating hepatic follistatin alleviates hyperglycemia. Nature Medicine 2018, 24: 1058-1069. PMID: 29867232, PMCID: PMC6039237, DOI: 10.1038/s41591-018-0048-0.Peer-Reviewed Original ResearchConceptsHepatic glucose productionAdipose tissue insulinGlucose toleranceTissue insulinSuppression of HGPGastric bypass surgeryFed obese miceHepatic insulin resistanceWhite adipose tissuePotential clinical significanceInsulin receptor substrate-1Bypass surgeryGlucose intoleranceHepatic inactivationObese miceInsulin resistanceObese individualsGlycated hemoglobinTranscription factor FOXO1Insulin sensitivityNormal suppressionClinical significanceReceptor substrate-1Adipose tissueExpression of Fst
2016
Down-regulation of Insulin Receptor Substrate 1 during Hyperglycemia Induces Vascular Smooth Muscle Cell Dedifferentiation*
Xi G, Wai C, White M, Clemmons D. Down-regulation of Insulin Receptor Substrate 1 during Hyperglycemia Induces Vascular Smooth Muscle Cell Dedifferentiation*. Journal Of Biological Chemistry 2016, 292: 2009-2020. PMID: 28003360, PMCID: PMC5290970, DOI: 10.1074/jbc.m116.758987.Peer-Reviewed Original ResearchConceptsInsulin receptor substrate-1Receptor substrate-1IRS-1Differentiated stateSubstrate-1Aberrant signalingMetabolic stressVascular smooth muscle cell dedifferentiationIGF-I stimulationIRS-1 expressionVascular smooth muscle cell migrationScaffold proteinSHPS-1Transcription factorsSmooth muscle cell dedifferentiationSmooth muscle cell migrationMuscle cell dedifferentiationMuscle cell migrationReceptor signalsVSMC dedifferentiationCell migrationInsulin-like growth factor ICell dedifferentiationMajor risk factorDevelopment of atherosclerosisInsulin receptor substrate-1 deficiency drives a proinflammatory phenotype in KRAS mutant lung adenocarcinoma
Metz H, Kargl J, Busch S, Kim K, Kurland B, Abberbock S, Randolph-Habecker J, Knoblaugh S, Kolls J, White M, Houghton A. Insulin receptor substrate-1 deficiency drives a proinflammatory phenotype in KRAS mutant lung adenocarcinoma. Proceedings Of The National Academy Of Sciences Of The United States Of America 2016, 113: 8795-8800. PMID: 27439864, PMCID: PMC4978299, DOI: 10.1073/pnas.1601989113.Peer-Reviewed Original ResearchConceptsInsulin receptor substrate-1Janus kinase/signal transducerKinase/signal transducerTumor burdenActivator of transcriptionReceptor substrate-1IRS-1 deficiencyKRAS-mutant lung adenocarcinomaInsulin-like growth factor receptorAdenoviral Cre recombinaseIL-22 receptorMutant lung adenocarcinomaTumor-promoting inflammationAdaptor proteinSignificant survival disadvantageGrowth factor receptorSignal transducerSubstrate-1PI3KProinflammatory phenotypeLung cancerLung adenocarcinomaMutant subgroupTissue microarrayCre recombinase
2014
IRS2 integrates insulin/IGF1 signalling with metabolism, neurodegeneration and longevity
White M. IRS2 integrates insulin/IGF1 signalling with metabolism, neurodegeneration and longevity. Diabetes Obesity And Metabolism 2014, 16: 4-15. PMID: 25200290, DOI: 10.1111/dom.12347.Peer-Reviewed Original ResearchConceptsInsulin/IGF1Central nervous systemInsulin-like signalingLife spanOrganisms showsCellular functionsNutrient homeostasisInsulin resistanceGenetic manipulationSystemic insulin resistanceClinical Alzheimer's diseaseType 2 diabetesEnergy homeostasisNeurodegenerative diseasesMetabolismNeurodegenerationCompensatory hyperinsulinaemiaHomeostasisProgressive neurodegenerationSystemic metabolismIGF1Excess insulinNervous systemAlzheimer's diseaseClinical perspectiveInsulin Receptor Substrates Are Essential for the Bioenergetic and Hypertrophic Response of the Heart to Exercise Training
Riehle C, Wende A, Zhu Y, Oliveira K, Pereira R, Jaishy B, Bevins J, Valdez S, Noh J, Kim B, Moreira A, Weatherford E, Manivel R, Rawlings T, Rech M, White M, Abel E. Insulin Receptor Substrates Are Essential for the Bioenergetic and Hypertrophic Response of the Heart to Exercise Training. Molecular And Cellular Biology 2014, 34: 3450-3460. PMID: 25002528, PMCID: PMC4135616, DOI: 10.1128/mcb.00426-14.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsEnergy MetabolismGene Expression RegulationGlycogenHeartInsulin Receptor Substrate ProteinsMiceMice, Inbred C57BLMice, KnockoutMitochondriaPeroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alphaPhosphatidylinositol 3-KinasesProtein IsoformsSignal TransductionSwimmingTranscription FactorsConceptsInsulin receptor substrate-1IRS isoformsProtein phosphatase 2AReceptor substrate-1Insulin receptor substrateInsulin-like growth factor 1 receptorGrowth factor 1 receptorSynthase kinase-3βPeroxisome proliferator-activated receptor gamma coactivatorPhosphatase 2AProliferator-activated receptor gamma coactivatorFactor 1 receptorPGC-1α protein contentCardiomyocyte-specific deletionDevelopmental regulationProtein contentHypertrophic responseReceptor substrateReceptor gamma coactivatorFatty acid oxidationSubstrate-1Kinase-3βDivergent rolesMetabolic adaptationNonredundant roleAPPL1 Potentiates Insulin Sensitivity by Facilitating the Binding of IRS1/2 to the Insulin Receptor
Ryu J, Galan A, Xin X, Dong F, Abdul-Ghani M, Zhou L, Wang C, Li C, Holmes B, Sloane L, Austad S, Guo S, Musi N, DeFronzo R, Deng C, White M, Liu F, Dong L. APPL1 Potentiates Insulin Sensitivity by Facilitating the Binding of IRS1/2 to the Insulin Receptor. Cell Reports 2014, 7: 1227-1238. PMID: 24813896, PMCID: PMC4380268, DOI: 10.1016/j.celrep.2014.04.006.Peer-Reviewed Original Research
2013
Myocardial Loss of IRS1 and IRS2 Causes Heart Failure and Is Controlled by p38α MAPK During Insulin Resistance
Qi Y, Xu Z, Zhu Q, Thomas C, Kumar R, Feng H, Dostal D, White M, Baker K, Guo S. Myocardial Loss of IRS1 and IRS2 Causes Heart Failure and Is Controlled by p38α MAPK During Insulin Resistance. Diabetes 2013, 62: 3887-3900. PMID: 24159000, PMCID: PMC3806607, DOI: 10.2337/db13-0095.Peer-Reviewed Original ResearchConceptsIRS2 proteinGene expressionType 2 diabetesEnergy metabolism gene expressionInsulin resistanceMetabolic gene expressionBox class ODouble knockout miceHeart failureActivation of p38Chronic insulin exposureActivation of p38αMetabolism gene expressionProtein kinaseRole of IRS1Cellular metabolismMolecular mechanismsInsulin receptorNeonatal rat ventricular cardiomyocytesP38α MAPKCause heart failureCellular dysfunctionIRS1Myocardial insulin resistanceClass OGenetic Inactivation of Pyruvate Dehydrogenase Kinases Improves Hepatic Insulin Resistance Induced Diabetes
Tao R, Xiong X, Harris R, White M, Dong X. Genetic Inactivation of Pyruvate Dehydrogenase Kinases Improves Hepatic Insulin Resistance Induced Diabetes. PLOS ONE 2013, 8: e71997. PMID: 23940800, PMCID: PMC3733847, DOI: 10.1371/journal.pone.0071997.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsDiabetes Mellitus, ExperimentalGene Expression Regulation, EnzymologicGene SilencingGlucose IntoleranceGlucose Tolerance TestInsulin Receptor Substrate ProteinsInsulin ResistanceLiverMiceMice, KnockoutOrgan SpecificityProtein Serine-Threonine KinasesPyruvate Dehydrogenase Acetyl-Transferring KinaseConceptsPyruvate dehydrogenase kinasePDK4 geneGene knockdownDehydrogenase kinasePDK4 gene expressionMitochondrial pyruvate dehydrogenasePdk geneGene attributesPDK2 genesGene inactivationGene expressionGenetic inactivationPyruvate dehydrogenaseGenesInsulin receptorMetabolic analysisSpecific shRNAGene deletionGenetic backgroundHepatic insulin receptorNull miceKinasePDK2KnockdownCritical role
2012
Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2
Copps K, White M. Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2. Diabetologia 2012, 55: 2565-2582. PMID: 22869320, PMCID: PMC4011499, DOI: 10.1007/s00125-012-2644-8.Peer-Reviewed Original ResearchConceptsInsulin receptor substrateT phosphorylationReceptor substrateSerine/threonine residuesSerine/threonine phosphorylationInsulin receptor tyrosine kinaseInsulin-stimulated kinasesReceptor tyrosine kinasesThreonine phosphorylationThreonine residuesNegative regulationTyrosine kinasePhosphorylationCultured cellsKinaseMetabolic diseasesIRS2IRS1Hormonal controlKey targetAltered patternTail regionComplex mechanismsRegulationDysregulationInhibition of TNF-α Improves the Bladder Dysfunction That Is Associated With Type 2 Diabetes
Wang Z, Cheng Z, Cristofaro V, Li J, Xiao X, Gomez P, Ge R, Gong E, Strle K, Sullivan M, Adam R, White M, Olumi A. Inhibition of TNF-α Improves the Bladder Dysfunction That Is Associated With Type 2 Diabetes. Diabetes 2012, 61: 2134-2145. PMID: 22688336, PMCID: PMC3402324, DOI: 10.2337/db11-1763.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsDiabetes Mellitus, Type 2Disease Models, AnimalInsulin Receptor Substrate ProteinsMetforminMiceMice, KnockoutMuscle ContractionMyosin Light ChainsReceptors, Tumor Necrosis Factor, Type IRho-Associated KinasesTumor Necrosis Factor-alphaUp-RegulationUrinary BladderUrinary Bladder DiseasesUrinary Bladder, OveractiveConceptsDiabetic bladder dysfunctionTumor necrosis factorType 2 diabetesBladder dysfunctionDKO animalsPrimary cultured bladder smooth muscle cellsSoluble TNF receptor 1Bladder smooth muscle tissueInhibition of TNFCultured bladder smooth muscle cellsAppropriate animal modelsBladder smooth muscle cellsTNF receptor 1Smooth muscle cellsRho-kinase activitySmooth muscle tissueInsulin receptor substrate-1Detrusor hypoactivityUrologic complicationsDetrusor overactivitySystemic treatmentDiabetic patientsClinical featuresBladder fillingVoided volume
2011
IRS-2 Deficiency Impairs NMDA Receptor-Dependent Long-term Potentiation
Martín E, Sánchez-Perez A, Trejo J, Martin-Aldana J, Jaimez M, Pons S, Umanzor C, Menes L, White M, Burks D. IRS-2 Deficiency Impairs NMDA Receptor-Dependent Long-term Potentiation. Cerebral Cortex 2011, 22: 1717-1727. PMID: 21955917, PMCID: PMC3388895, DOI: 10.1093/cercor/bhr216.Peer-Reviewed Original ResearchConceptsLong-term potentiationInduction of LTPInsulin receptor substrate 2Activation of FynPotential new componentSynaptic transmissionSynaptic plasticityWild-type controlsSubstrate 2Alzheimer's diseasePostsynaptic N-methyl-D-aspartate receptorsIRS2 expressionN-methyl-D-aspartate receptorsImpairs long-term potentiationInsulin-like growth factor IMechanistic linkNMDA receptor-dependent long-term potentiationType 2 diabeticsBasal synaptic transmissionExpression of NR2AGroups of miceGrowth factor IPaired-pulse facilitationNeurodegenerative disordersTetanus stimulationIRS2 increases mitochondrial dysfunction and oxidative stress in a mouse model of Huntington disease
Sadagurski M, Cheng Z, Rozzo A, Palazzolo I, Kelley G, Dong X, Krainc D, White M. IRS2 increases mitochondrial dysfunction and oxidative stress in a mouse model of Huntington disease. Journal Of Clinical Investigation 2011, 121: 4070-4081. PMID: 21926467, PMCID: PMC3195462, DOI: 10.1172/jci46305.Peer-Reviewed Original ResearchMeSH KeywordsAgingAnimalsBrainDisease Models, AnimalDisease ProgressionFemaleForkhead Box Protein O1Forkhead Transcription FactorsGene ExpressionHumansHuntington DiseaseInsulin Receptor Substrate ProteinsLongevityMaleMiceMice, KnockoutMice, Mutant StrainsMice, TransgenicMitochondriaOxidative StressSignal TransductionConceptsHuntington's diseaseOxidative stressMouse modelProgression of HDMitochondrial dysfunctionMajor risk factorR6/2 mouse modelNeuronal oxidative stressMitochondrial functionHD-like symptomsHD patientsNumber of autophagosomesTranscription factor FOXO1Risk factorsR6/2 miceSlow progressionTherapeutic approachesExpression of IRS2HD progressionLife spanNeurodegenerative diseasesIRS2 levelsProgressionDiseaseMiceInsulin Receptor Substrates Irs1 and Irs2 Coordinate Skeletal Muscle Growth and Metabolism via the Akt and AMPK Pathways
Long Y, Cheng Z, Copps K, White M. Insulin Receptor Substrates Irs1 and Irs2 Coordinate Skeletal Muscle Growth and Metabolism via the Akt and AMPK Pathways. Molecular And Cellular Biology 2011, 31: 430-441. PMID: 21135130, PMCID: PMC3028618, DOI: 10.1128/mcb.00983-10.Peer-Reviewed Original ResearchMeSH KeywordsAMP-Activated Protein KinasesAnimalsBody CompositionBody WeightEnzyme ActivationForkhead Transcription FactorsGlucoseHomeostasisIn Vitro TechniquesInsulinInsulin Receptor Substrate ProteinsLactic AcidMiceMice, KnockoutModels, BiologicalMuscle, SkeletalMyocardiumOrgan SizeOrgan SpecificityProto-Oncogene Proteins c-aktSignal TransductionUp-RegulationConceptsSkeletal muscle growthMdKO miceMuscle growthElevated AMP/ATP ratioInsulin-receptor substrate IRS1AMP/ATP ratioSkeletal muscleInsulin receptor substrateMuscle creatine kinaseSubstrates IRS1Insulin-stimulated glucose uptakeProtein kinaseNutrient availabilityReceptor substrateCarboxylase phosphorylationFatty acid oxidationAMPK pathwayMetabolic homeostasisATP ratioIRS1Impaired growthKinaseAmino acid releaseSkeletal muscle massAtrogene expression