Featured Publications
BRD7 improves glucose homeostasis independent of IRS proteins.
Kim Y, Lee J, Han Y, Tao R, White M, Liu R, Park S. BRD7 improves glucose homeostasis independent of IRS proteins. Journal Of Endocrinology 2023, 258 PMID: 37578842, PMCID: PMC10430774, DOI: 10.1530/joe-23-0119.Peer-Reviewed Original ResearchConceptsGlucose homeostasisKnockout miceAlternative insulinObese miceGlucose homeostasis independentGlucose metabolism parametersContext of obesityBlood glucose levelsMetabolism parametersGlucose levelsGlucose metabolismInsulinMiceIRS proteinsInsulin receptorProtein 7ObesityHomeostasisUpregulationBRD7InvolvementPathwayNovel insightsEuglycemiaFindingsThe P300 acetyltransferase inhibitor C646 promotes membrane translocation of insulin receptor protein substrate and interaction with the insulin receptor
Peng J, Ramatchandirin B, Wang Y, Pearah A, Namachivayam K, Wolf R, Steele K, MohanKumar K, Yu L, Guo S, White M, Maheshwari A, He L. The P300 acetyltransferase inhibitor C646 promotes membrane translocation of insulin receptor protein substrate and interaction with the insulin receptor. Journal Of Biological Chemistry 2022, 298: 101621. PMID: 35074429, PMCID: PMC8850660, DOI: 10.1016/j.jbc.2022.101621.Peer-Reviewed Original ResearchConceptsAbsence of insulinP300 acetyltransferase activityTyrosine kinase activityAcetyltransferase activityInsulin receptorObese patientsTyrosine phosphorylationRole of acetylationInsulinNormal functionMembrane translocationSubsequent activationC646PatientsLiver hepatocytesProtein substratesInhibitionReceptorsMolecular mechanismsHepatocytesPhosphorylationBeta subunitKinase activityObesityUnique effects
2021
Insulin action at a molecular level – 100 years of progress
White M, Kahn C. Insulin action at a molecular level – 100 years of progress. Molecular Metabolism 2021, 52: 101304. PMID: 34274528, PMCID: PMC8551477, DOI: 10.1016/j.molmet.2021.101304.Peer-Reviewed Original ResearchConceptsAmino acid sequenceType 2 diabetesFunction of insulinAcid sequenceMolecular knowledgeHuman diseasesInsulin-sensitive tissuesPhysiological functionsPhysiological roleInsulin receptorInsulin-resistant statesInsulin 100 yearsInsulin actionBlood glucoseCascadeInsulinDiabetesTissueDiscoveryRegulationTreatmentRemarkable advancesRoleSequenceYears
2017
Endotoxemia-mediated activation of acetyltransferase P300 impairs insulin signaling in obesity
Cao J, Peng J, An H, He Q, Boronina T, Guo S, White M, Cole P, He L. Endotoxemia-mediated activation of acetyltransferase P300 impairs insulin signaling in obesity. Nature Communications 2017, 8: 131. PMID: 28743992, PMCID: PMC5526866, DOI: 10.1038/s41467-017-00163-w.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell Line, TumorE1A-Associated p300 ProteinEndoplasmic Reticulum StressEndotoxemiaGene Expression ProfilingImmunoblottingInsulinInsulin ResistanceLipopolysaccharidesLiverMaleMembrane ProteinsMice, Inbred C57BLMice, ObeseObesityProtein Serine-Threonine KinasesReceptor, InsulinSignal TransductionX-Box Binding Protein 1ConceptsInsulin resistanceP300 acetyltransferase activityHigh-fat diet-fedChronic low-grade inflammationObese ob/ob miceOb/ob miceLow-grade inflammationDiet-induced obesityAcetyltransferase activityElevated plasma concentrationsPromising therapeutic targetCytoplasm of hepatocytesEndoplasmic reticulum stressObese patientsObese miceInsulin sensitivityIntestinal permeabilityOb micePlasma concentrationsDisrupts insulinTherapeutic targetImpairs insulinPharmacological inhibitionGlucose productionObesity
2014
APPL1 Potentiates Insulin Sensitivity by Facilitating the Binding of IRS1/2 to the Insulin Receptor
Ryu J, Galan A, Xin X, Dong F, Abdul-Ghani M, Zhou L, Wang C, Li C, Holmes B, Sloane L, Austad S, Guo S, Musi N, DeFronzo R, Deng C, White M, Liu F, Dong L. APPL1 Potentiates Insulin Sensitivity by Facilitating the Binding of IRS1/2 to the Insulin Receptor. Cell Reports 2014, 7: 1227-1238. PMID: 24813896, PMCID: PMC4380268, DOI: 10.1016/j.celrep.2014.04.006.Peer-Reviewed Original ResearchInsulin and Metabolic Stress Stimulate Multisite Serine/Threonine Phosphorylation of Insulin Receptor Substrate 1 and Inhibit Tyrosine Phosphorylation*
Hançer N, Qiu W, Cherella C, Li Y, Copps K, White M. Insulin and Metabolic Stress Stimulate Multisite Serine/Threonine Phosphorylation of Insulin Receptor Substrate 1 and Inhibit Tyrosine Phosphorylation*. Journal Of Biological Chemistry 2014, 289: 12467-12484. PMID: 24652289, PMCID: PMC4007441, DOI: 10.1074/jbc.m114.554162.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnisomycinAntigens, CDBlotting, WesternCHO CellsCricetinaeCricetulusEnzyme InhibitorsHumansHypoglycemic AgentsInsulinInsulin Receptor Substrate ProteinsPhosphatidylinositol 3-KinasesPhosphoinositide-3 Kinase InhibitorsPhosphorylationProtein Serine-Threonine KinasesProto-Oncogene Proteins c-aktRatsReceptor, InsulinRibosomal Protein S6 Kinases, 70-kDaSerineSignal TransductionThapsigarginThreonineTOR Serine-Threonine KinasesTunicamycinTyrosineConceptsTyrosine phosphorylationPhospho-specific monoclonal antibodiesSerine/threonine phosphorylationInsulin receptor tyrosine kinasePI3KInsulin receptor substrate-1Insulin-stimulated cellsHuman insulin receptorIRS1 tyrosine phosphorylationReceptor substrate-1Metabolic stressReceptor tyrosine kinasesThreonine phosphorylationThreonine residuesS6 kinasePI3K inhibitionSubstrate-1Mechanistic targetTyrosine kinaseInsulin stimulationMEK pathwayKey substrateInsulin receptorPresence of inhibitorsCHO cells
2013
Direct Autocrine Action of Insulin on β-Cells: Does It Make Physiological Sense?
Rhodes C, White M, Leahy J, Kahn S. Direct Autocrine Action of Insulin on β-Cells: Does It Make Physiological Sense? Diabetes 2013, 62: 2157-2163. PMID: 23801714, PMCID: PMC3712043, DOI: 10.2337/db13-0246.Peer-Reviewed Original ResearchConceptsΒ-cellsDirect autocrine effectsTransgenic mouse studiesSignal transductionPancreatic β-cellsDownstream elementsAutocrine actionRelevant ligandsΒ-cell functionAutocrine effectsMouse studiesCircumstantial evidencePhysiological senseTransductionAvailable experimental evidencePathwayInsightsExperimental evidenceInsulinNerve Growth Factor Receptor TrkA, a New Receptor in Insulin Signaling Pathway in PC12 Cells*
Geetha T, Rege S, Mathews S, Meakin S, White M, Babu J. Nerve Growth Factor Receptor TrkA, a New Receptor in Insulin Signaling Pathway in PC12 Cells*. Journal Of Biological Chemistry 2013, 288: 23807-23813. PMID: 23749991, PMCID: PMC3745327, DOI: 10.1074/jbc.m112.436279.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid MotifsAmino Acid SequenceAnimalsEnzyme ActivationGlucoseHumansInsulinInsulin Receptor Substrate ProteinsMitogen-Activated Protein Kinase 7Molecular Sequence DataNerve Growth FactorPC12 CellsPhosphorylationPhosphotyrosineProtein BindingProto-Oncogene Proteins c-aktRatsReceptor, InsulinReceptor, trkASignal TransductionConceptsInsulin receptor substrate-1Insulin receptorPC12 cellsTrkA kinase domainTransmembrane receptor tyrosine kinaseKinase-inactive mutantInsulin Signaling PathwayReceptor substrate-1Nerve growth factor receptor TrkAReceptor tyrosine kinasesNerve growth factorActivation of AktNPXY motifKinase domainTyrosine phosphorylationSubstrate-1Regulatory loopTyrosine kinaseSignaling pathwaysGrowth factorNew receptorsReceptor TrkACellsPathwayTrkA
2011
Regulation of glucose homeostasis through a XBP-1–FoxO1 interaction
Zhou Y, Lee J, Reno C, Sun C, Park S, Chung J, Lee J, Fisher S, White M, Biddinger S, Ozcan U. Regulation of glucose homeostasis through a XBP-1–FoxO1 interaction. Nature Medicine 2011, 17: 356-365. PMID: 21317886, PMCID: PMC3897616, DOI: 10.1038/nm.2293.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBlood GlucoseDisease Models, AnimalDNA-Binding ProteinsForkhead Box Protein O1Forkhead Transcription FactorsGlucoseHomeostasisHydrolysisInsulin ResistanceLiverMiceMutationPhosphorylationReceptor, InsulinRegulatory Factor X Transcription FactorsSignal TransductionTranscription FactorsX-Box Binding Protein 1
2009
Insulin-Like Growth Factor 2 and the Insulin Receptor, But Not Insulin, Regulate Fetal Hepatic Glycogen Synthesis
Liang L, Guo W, Esquiliano D, Asai M, Rodriguez S, Giraud J, Kushner J, White M, Lopez M. Insulin-Like Growth Factor 2 and the Insulin Receptor, But Not Insulin, Regulate Fetal Hepatic Glycogen Synthesis. Endocrinology 2009, 151: 741-747. PMID: 20032056, PMCID: PMC2817628, DOI: 10.1210/en.2009-0705.Peer-Reviewed Original ResearchConceptsGlycogen synthesisInsulin receptorFetal liverInsulin receptor substrate 2Insulin-like growth factor 2Knockout mouse strainIR-A isoformGlycogen synthaseMajor regulatorGrowth factor 2Akt proteinSubstrate 2Insulin receptor isoformsGlycogen metabolismIgf2 deficiencyPDX-1Factor 2Receptor isoformsHepatic glycogen synthesisHepatic glycogen metabolismINSRIGF2Fetal hepatocytesIsoformsMouse strains
2008
Insulin-Like Signaling, Nutrient Homeostasis, and Life Span
Taguchi A, White M. Insulin-Like Signaling, Nutrient Homeostasis, and Life Span. Annual Review Of Physiology 2008, 70: 191-212. PMID: 17988211, DOI: 10.1146/annurev.physiol.70.113006.100533.Peer-Reviewed Original ResearchGenetic Deficiency of Glycogen Synthase Kinase-3β Corrects Diabetes in Mouse Models of Insulin Resistance
Tanabe K, Liu Z, Patel S, Doble B, Li L, Cras-Méneur C, Martinez S, Welling C, White M, Bernal-Mizrachi E, Woodgett J, Permutt M. Genetic Deficiency of Glycogen Synthase Kinase-3β Corrects Diabetes in Mouse Models of Insulin Resistance. PLOS Biology 2008, 6: e37. PMID: 18288891, PMCID: PMC2245985, DOI: 10.1371/journal.pbio.0060037.Peer-Reviewed Original ResearchConceptsBeta-cell massIrs2-/- miceInsulin resistanceMouse modelType 2 diabetes mellitusObese insulin-resistant individualsWhole-body glucose disposalOnset of diabetesPdx1 levelsBeta-cell functionBeta-cell lossInsulin-resistant individualsBeta-cell replicationGSK-3betaBeta-cell proliferationInsulin receptor substrate 2Cyclin-dependent kinase inhibitorDiabetes mellitusDiabetes onsetEarly diabetesPI-3K/Akt pathwayGlucose disposalGSK-3beta activityDiabetesInsulin action
2007
Analysis of compensatory β-cell response in mice with combined mutations of Insr and Irs2
Kim J, Kido Y, Scherer P, White M, Accili D. Analysis of compensatory β-cell response in mice with combined mutations of Insr and Irs2. AJP Endocrinology And Metabolism 2007, 292: e1694-e1701. PMID: 17299086, DOI: 10.1152/ajpendo.00430.2006.Peer-Reviewed Original ResearchMeSH KeywordsAdaptation, PhysiologicalAdiponectinAdipose TissueAnimalsAnimals, NewbornDiabetes MellitusGlucose Tolerance TestGrowth DisordersHyperinsulinismInsulinInsulin Receptor Substrate ProteinsInsulin ResistanceInsulin-Secreting CellsIntracellular Signaling Peptides and ProteinsLeptinLiverMiceMice, Inbred StrainsMice, KnockoutMuscle, SkeletalMutationOrgan SizeOsmolar ConcentrationPhosphatidylinositol 3-KinasesPhosphoproteinsProto-Oncogene Proteins c-aktReceptor, InsulinConceptsBeta-cell dysfunctionBeta-cell massInsulin resistanceInsulin secretionType 2 diabetes resultsCompensatory insulin secretionBeta-cell responseImpaired insulin actionType 2 diabetesΒ-cell responseBeta-cell growthBeta-cell physiologyDiabetes resultsInsulin levelsMetabolic controlInsulin actionProgressive deteriorationDiabetesRobust increaseDysfunctionCompensatory responseMiceSecretionComprehensive treatmentINSR
2005
Irs1 and Irs2 signaling is essential for hepatic glucose homeostasis and systemic growth
Dong X, Park S, Lin X, Copps K, Yi X, White M. Irs1 and Irs2 signaling is essential for hepatic glucose homeostasis and systemic growth. Journal Of Clinical Investigation 2005, 116: 101-114. PMID: 16374520, PMCID: PMC1319221, DOI: 10.1172/jci25735.Peer-Reviewed Original ResearchConceptsSystemic growthHundreds of genesInsulin receptor substrateHepatic nutrient homeostasisHepatic glucose homeostasisHeterologous pathwaysNutrient homeostasisReceptor substrateGene expressionGSK3beta phosphorylationReceptor signalsHepatic gene expressionLKO miceInsulin receptorGlucose homeostasisIRS2IRS1Hepatic genesHepatic insulin receptorAkt-FoxO1 pathwayHomeostasisGenesHepatic glycogen storesLKO liversPathwayExendin-4 Uses Irs2 Signaling to Mediate Pancreatic β Cell Growth and Function*
Park S, Dong X, Fisher T, Dunn S, Omer A, Weir G, White M. Exendin-4 Uses Irs2 Signaling to Mediate Pancreatic β Cell Growth and Function*. Journal Of Biological Chemistry 2005, 281: 1159-1168. PMID: 16272563, DOI: 10.1074/jbc.m508307200.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBlood GlucoseCell LineCell SurvivalCyclic AMPDose-Response Relationship, DrugElectrophoresis, Polyacrylamide GelExenatideGenotypeGlucagon-Like Peptide-1 ReceptorGlucoseGuinea PigsHumansHyperglycemiaImmunoblottingImmunohistochemistryImmunoprecipitationInsulinInsulin Receptor Substrate ProteinsInsulin SecretionInsulin-Secreting CellsIntracellular Signaling Peptides and ProteinsIslets of LangerhansMiceMice, TransgenicModels, BiologicalModels, ChemicalPancreasPeptidesPhosphoproteinsPhosphorylationReceptor, InsulinReceptors, GlucagonReverse Transcriptase Polymerase Chain ReactionRNA, MessengerRNA, Small InterferingSignal TransductionTime FactorsVenomsConceptsGlucagon-like peptide-1 receptor agonistsPeptide-1 receptor agonistsReceptor agonistExendin-4Beta cellsProgressive beta cell lossShort-term therapeutic effectsInsulin-like growth factorBeta-cell lossProgression of diabetesBeta-cell massBeta-cell replicationBeta-cell growthPancreatic β-cell growthΒ-cell growthIrs2 branchPrevents diabetesInsulin/insulin-like growth factorCell growthInsulin secretionTherapeutic effectIRS2 expressionLong-term effectsFatal diabetesCell lossMolecular mechanism(s) of burn-induced insulin resistance in murine skeletal muscle: Role of IRS phosphorylation
Zhang Q, Carter E, Ma B, White M, Fischman A, Tompkins R. Molecular mechanism(s) of burn-induced insulin resistance in murine skeletal muscle: Role of IRS phosphorylation. Life Sciences 2005, 77: 3068-3077. PMID: 15982669, DOI: 10.1016/j.lfs.2005.02.034.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBurnsDisease Models, AnimalEnzyme ActivationHindlimbInsulin Receptor Substrate ProteinsInsulin ResistanceJNK Mitogen-Activated Protein KinasesMaleMAP Kinase Kinase 4MiceMitogen-Activated Protein Kinase KinasesMuscle, SkeletalPhosphatidylinositol 3-KinasesPhosphoproteinsPhosphorylationProtein Serine-Threonine KinasesProto-Oncogene ProteinsProto-Oncogene Proteins c-aktReceptor, InsulinSignal TransductionConceptsInsulin receptor substrate-1Burn-induced insulin resistanceAkt kinase activityIRS-1 proteinSAPK/JNKSerine 307Kinase activitySkeletal muscleReceptor substrate-1Murine skeletal muscleHind limb skeletal muscleStress kinasesKey proteinsSubstrate-1Biochemical basisPhosphorylationIRS phosphorylationKinase enzymeProteinEnzyme activityJNKLimb skeletal muscleProtein contentInsulin resistanceKinaseAttenuation of Accumulation of Neointimal Lipid by Pioglitazone in Mice Genetically Deficient in Insulin Receptor Substrate-2 and Apolipoprotein E
Clough M, Schneider D, Sobel B, White M, Wadsworth M, Taatjes D. Attenuation of Accumulation of Neointimal Lipid by Pioglitazone in Mice Genetically Deficient in Insulin Receptor Substrate-2 and Apolipoprotein E. Journal Of Histochemistry & Cytochemistry 2005, 53: 603-610. PMID: 15872053, DOI: 10.1369/jhc.4a6590.2005.Peer-Reviewed Original ResearchMeSH KeywordsAdministration, OralAnimalsAortaApolipoproteins EArteriosclerosisHyperlipidemiasHypoglycemic AgentsInsulin Receptor Substrate ProteinsInsulin ResistanceIntracellular Signaling Peptides and ProteinsLipid MetabolismMiceMice, Inbred C57BLMice, KnockoutPhosphoproteinsPioglitazoneReceptor, InsulinThiazolidinedionesTunica IntimaConceptsInsulin resistanceApolipoprotein EAcute coronary syndromeVulnerable atherosclerotic plaquesInsulin receptor substrate 2Accumulation of lipidsCoronary syndromeProximal aortaInsulin sensitizersNeointimal accumulationAtheroma formationAortic intimaAtherosclerotic lesionsAtherosclerotic plaquesType 2PioglitazoneMiceLesionsCross-sectional areaHeterozygous deficiencyAtherogenesisSubstrate 2TreatmentLipidsAtheroma
2004
Signaling Pathways: The Benefits of Good Communication
Fisher T, White M. Signaling Pathways: The Benefits of Good Communication. Current Biology 2004, 14: r1005-r1007. PMID: 15589136, DOI: 10.1016/j.cub.2004.11.024.Peer-Reviewed Original ResearchInsulin resistance in thermally-injured rats is associated with post-receptor alterations in skeletal muscle, liver and adipose tissue.
Carter E, Burks D, Fischman A, White M, Tompkins R. Insulin resistance in thermally-injured rats is associated with post-receptor alterations in skeletal muscle, liver and adipose tissue. International Journal Of Molecular Medicine 2004, 14: 653-8. PMID: 15375597, DOI: 10.3892/ijmm.14.4.653.Peer-Reviewed Original ResearchConceptsUrinary C-peptide excretionC-peptide excretionPost-receptor alterationsInsulin resistanceInsulin receptor bindingSkeletal muscleInsulin infusionBurn injuryAdipose tissueFull-thickness scald injuryGlucose productionSham-treated control animalsReceptor bindingHepatic glucose productionIRS-1 expressionWestern blot methodBinding of insulinAbsence of changesScald injuryBolus injectionRat modelPossible molecular mechanismsControl animalsInjuryThermal injuryDisruption of the SH2-B Gene Causes Age-Dependent Insulin Resistance and Glucose Intolerance
Duan C, Yang H, White M, Rui L. Disruption of the SH2-B Gene Causes Age-Dependent Insulin Resistance and Glucose Intolerance. Molecular And Cellular Biology 2004, 24: 7435-7443. PMID: 15314154, PMCID: PMC506995, DOI: 10.1128/mcb.24.17.7435-7443.2004.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Signal TransducingAdipose TissueAgingAnimalsBlood GlucoseCarrier ProteinsCell LineDietary FatsGlucose IntoleranceHomeostasisHumansInsulinInsulin Receptor Substrate ProteinsInsulin ResistanceIntracellular Signaling Peptides and ProteinsIslets of LangerhansLiverMaleMiceMice, Inbred StrainsMice, KnockoutMitogen-Activated Protein KinasesMuscle, SkeletalPhosphatidylinositol 3-KinasesPhosphoproteinsProtein Serine-Threonine KinasesProto-Oncogene ProteinsProto-Oncogene Proteins c-aktReceptor, InsulinSignal TransductionConceptsSrc homology 2Insulin receptor substrate-1Insulin receptor activationInsulin receptorTyrosine phosphorylationSH2 domain-dependent mannerPleckstrin homology domain-containing adaptor proteinDomain-containing adaptor proteinDomain-dependent mannerReceptor substrate-1Skeletal muscleSH2 domainHomology 2Adaptor proteinReceptor activationSubstrate-1Physiological roleCultured cellsGlucose homeostasisERK1/2 pathwayDependent insulin resistancePhysiological enhancerSystemic deletionPhosphorylationIRS2