Featured Publications
Mechanism of Insulin Action
White M. Mechanism of Insulin Action. 2024, 111-127. DOI: 10.1002/9781119697473.ch9.Peer-Reviewed Original ResearchReceptor tyrosine kinasesTyrosine kinaseGrowth factor signalingSecrete sufficient insulinDysregulated insulin signalingPancreatic beta cellsMuscle insulin resistanceEnvironmental signalsSignal transductionInsulin signalingMuscle-specific deletionSystemic insulin actionSystemic insulin resistanceAdequate insulin responseFactor signalingInsulin-like growth factor signalingPlasma membraneInsulin resistanceInsulin receptorLigand bindingBeta cellsMetabolic stressChronic insulin resistanceGlucose transportTransphosphorylation
2013
Direct Autocrine Action of Insulin on β-Cells: Does It Make Physiological Sense?
Rhodes C, White M, Leahy J, Kahn S. Direct Autocrine Action of Insulin on β-Cells: Does It Make Physiological Sense? Diabetes 2013, 62: 2157-2163. PMID: 23801714, PMCID: PMC3712043, DOI: 10.2337/db13-0246.Peer-Reviewed Original ResearchConceptsΒ-cellsDirect autocrine effectsTransgenic mouse studiesSignal transductionPancreatic β-cellsDownstream elementsAutocrine actionRelevant ligandsΒ-cell functionAutocrine effectsMouse studiesCircumstantial evidencePhysiological senseTransductionAvailable experimental evidencePathwayInsightsExperimental evidenceInsulin
2003
Nutrient-dependent and Insulin-stimulated Phosphorylation of Insulin Receptor Substrate-1 on Serine 302 Correlates with Increased Insulin Signaling*
Giraud J, Leshan R, Lee Y, White M. Nutrient-dependent and Insulin-stimulated Phosphorylation of Insulin Receptor Substrate-1 on Serine 302 Correlates with Increased Insulin Signaling*. Journal Of Biological Chemistry 2003, 279: 3447-3454. PMID: 14623899, DOI: 10.1074/jbc.m308631200.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAmino AcidsAndrostadienesAnimalsBlotting, WesternBromodeoxyuridineCell DivisionCell LineCHO CellsCricetinaeCulture Media, Serum-FreeDose-Response Relationship, DrugEnzyme InhibitorsGlucoseGlycogen Synthase Kinase 3Glycogen Synthase Kinase 3 betaInsulinInsulin Receptor Substrate ProteinsJNK Mitogen-Activated Protein KinasesMiceMitogen-Activated Protein KinasesMolecular Sequence DataMutagenesis, Site-DirectedMutationPhosphoproteinsPhosphorylationPoint MutationPrecipitin TestsRatsSerineSignal TransductionSirolimusTime FactorsWortmanninConceptsInsulin/IGFIRS-1Insulin-stimulated signal transductionInsulin receptor substrate IRS-1Ser/Thr phosphorylationSequence-specific polyclonal antibodiesInsulin-stimulated tyrosine phosphorylationInsulin receptor substrate-1Synthase kinase-3beta phosphorylationSubstrate IRS-1IRS-1-mediated signalingRibosomal S6 proteinC-Jun kinaseInsulin-stimulated phosphorylationReceptor substrate-1IGF-I stimulationThr phosphorylationKinase associatesP85 bindingPhosphorylated residuesSignal transductionInsulin-stimulated AktTyrosine phosphorylationS6 proteinNutrient availability
2002
Stat6 and IRS-2 Cooperate in Interleukin 4 (IL-4)-Induced Proliferation and Differentiation but Are Dispensable for IL-4-Dependent Rescue from Apoptosis
Wurster A, Withers D, Uchida T, White M, Grusby M. Stat6 and IRS-2 Cooperate in Interleukin 4 (IL-4)-Induced Proliferation and Differentiation but Are Dispensable for IL-4-Dependent Rescue from Apoptosis. Molecular And Cellular Biology 2002, 22: 117-126. PMID: 11739727, PMCID: PMC134231, DOI: 10.1128/mcb.22.1.117-126.2002.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsApoptosisCell Cycle ProteinsCell DifferentiationCell DivisionCell SeparationCells, CulturedCyclin-Dependent Kinase Inhibitor p27Enzyme InhibitorsFlow CytometryInsulin Receptor Substrate ProteinsInterleukin-4Intracellular Signaling Peptides and ProteinsMiceMice, KnockoutPhosphatidylinositol 3-KinasesPhosphoproteinsSignal TransductionSTAT6 Transcription FactorTh2 CellsT-LymphocytesTrans-ActivatorsTumor Suppressor ProteinsConceptsIRS-2Protein tyrosine phosphatase activityProtein tyrosine phosphatase inhibitorTyrosine phosphatase activityTyrosine phosphatase inhibitorWild-type cellsIL-4 signal transductionIRS-2 expressionIL-4-induced proliferationCDK inhibitor p27Kip1Antiapoptotic effectPrimary T cellsPhosphatase inhibitorCytoplasmic tailSignal transductionDifferentiation eventsCooperative regulationGene expressionAntiapoptotic signalsCell developmentAntiapoptotic activityInterleukin-4 receptorPhosphatase activityPrimary lymphocytesSTAT6
2001
Phosphorylation of Ser307 in Insulin Receptor Substrate-1 Blocks Interactions with the Insulin Receptor and Inhibits Insulin Action*
Aguirre V, Werner E, Giraud J, Lee Y, Shoelson S, White M. Phosphorylation of Ser307 in Insulin Receptor Substrate-1 Blocks Interactions with the Insulin Receptor and Inhibits Insulin Action*. Journal Of Biological Chemistry 2001, 277: 1531-1537. PMID: 11606564, DOI: 10.1074/jbc.m101521200.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnisomycinAnti-Bacterial AgentsCell LineHumansInsulinInsulin Receptor Substrate ProteinsMitogen-Activated Protein Kinase 8Mitogen-Activated Protein KinasesPhosphatidylinositol 3-KinasesPhosphoproteinsPhosphorylationRatsReceptor, InsulinRecombinant Fusion ProteinsSignal TransductionTumor Necrosis Factor-alphaTwo-Hybrid System TechniquesConceptsInsulin receptor substrate-1Phosphotyrosine-binding (PTB) domainInsulin receptorPotential phosphorylation sitesPhosphorylation of Ser307Stress-activated kinasesInsulin-stimulated kinasesReceptor substrate-1Insulin signal transductionPTB domainMAPK cascadePhosphorylation sitesMyeloid progenitor cellsSignal transductionSerine residuesCatalytic domainSerine phosphorylationDomain functionsSubstrate-1Insulin stimulationCell backgroundPhosphorylationProgenitor cellsGeneral mechanismMechanism of inhibition
2000
Tyrosine Dephosphorylation and Deactivation of Insulin Receptor Substrate-1 by Protein-tyrosine Phosphatase 1B POSSIBLE FACILITATION BY THE FORMATION OF A TERNARY COMPLEX WITH THE GRB2 ADAPTOR PROTEIN*
Goldstein B, Bittner-Kowalczyk A, White M, Harbeck M. Tyrosine Dephosphorylation and Deactivation of Insulin Receptor Substrate-1 by Protein-tyrosine Phosphatase 1B POSSIBLE FACILITATION BY THE FORMATION OF A TERNARY COMPLEX WITH THE GRB2 ADAPTOR PROTEIN*. Journal Of Biological Chemistry 2000, 275: 4283-4289. PMID: 10660596, DOI: 10.1074/jbc.275.6.4283.Peer-Reviewed Original ResearchConceptsInsulin receptor substrate-1Receptor substrate-1Tyrosine dephosphorylationAdaptor proteinSubstrate-1Tyrosine-phosphorylated IRS-1Src homology 2 domainSteady-state tyrosine phosphorylationAdaptor protein Grb2Grb2 adaptor proteinStable protein complexesProtein tyrosine phosphataseNovel molecular interactionInsulin signal transductionMolecular interactionsProtein Grb2Protein complexesP85 subunitSHP-2Overlay blotsP-nitrophenyl phosphateSignal transductionTyrosine phosphorylationPhosphorylation stateInactive PTP1BDysregulation of IRS-proteins causes insulin resistance and diabetes
Aguirre V, White M. Dysregulation of IRS-proteins causes insulin resistance and diabetes. Current Opinion In Endocrinology Diabetes And Obesity 2000, 7: 1. DOI: 10.1097/00075197-200002000-00001.Peer-Reviewed Original ResearchIRS proteinsPeripheral insulin resistanceInsulin receptor substrate (IRS) proteinsInsulin/insulin-like growth factorType 2 diabetesΒ-cell differentiationInsulin-like growth factorInsulin receptor substrateCompensatory insulin secretionChronic insulin resistanceInsulin resistanceInsulin-signaling pathwayCarbohydrate metabolismInsulin secretionSubstrate proteinsGrowth factorSignal transductionTranscription factorsGenetic approachesCommon type 2 diabetesMolecular basisPancreatic β-cellsReceptor substrateInsulin actionInsulin-signaling system
1999
Stimulation of pancreatic beta-cell proliferation by growth hormone is glucose-dependent: signal transduction via janus kinase 2 (JAK2)/signal transducer and activator of transcription 5 (STAT5) with no crosstalk to insulin receptor substrate-mediated mitogenic signalling.
Cousin S, Hügl S, Myers M, White M, Reifel-Miller A, Rhodes C. Stimulation of pancreatic beta-cell proliferation by growth hormone is glucose-dependent: signal transduction via janus kinase 2 (JAK2)/signal transducer and activator of transcription 5 (STAT5) with no crosstalk to insulin receptor substrate-mediated mitogenic signalling. Biochemical Journal 1999, 344 Pt 3: 649-58. PMID: 10585851, PMCID: PMC1220686, DOI: 10.1042/0264-6021:3440649.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Signal TransducingAdaptor Proteins, Vesicular TransportAnimalsCell DivisionCell LineDNA-Binding ProteinsGlucoseGRB2 Adaptor ProteinGrowth HormoneInsulin Receptor Substrate ProteinsInsulin-Like Growth Factor IIntracellular Signaling Peptides and ProteinsIslets of LangerhansJanus Kinase 2Milk ProteinsMitogen-Activated Protein KinasesPhosphoproteinsPhosphorylationProteinsProtein-Tyrosine KinasesProto-Oncogene ProteinsRatsRibosomal Protein S6 KinasesShc Signaling Adaptor ProteinsSignal TransductionSon of Sevenless Protein, DrosophilaSrc Homology 2 Domain-Containing, Transforming Protein 1STAT5 Transcription FactorTrans-ActivatorsConceptsINS-1 cell proliferationSignal transduction pathwaysSignal transductionCell proliferationKinase 2Sevenless-1 proteinMitogenic signal transduction pathwaysJAK2/STAT5 pathwayMitogen-activated protein kinaseInsulin receptor substrateBeta-cell proliferationRat growth hormoneJAK2/STAT5Pancreatic beta cell proliferationMitogenic signalingS6 kinaseProtein kinaseProtein associationTranscription 5Beta-cell lineReceptor substrateDifferent mitogenicRat beta-cell lineDownstream activationIRS-2Stimulation of pancreatic β-cell proliferation by growth hormone is glucose-dependent: signal transduction via Janus kinase 2 (JAK2)/signal transducer and activator of transcription 5 (STAT5) with no crosstalk to insulin receptor substrate-mediated mitogenic signalling
COUSIN S, HülGL S, MYERS M, WHITE M, REIFEL-MILLER A, RHODES C. Stimulation of pancreatic β-cell proliferation by growth hormone is glucose-dependent: signal transduction via Janus kinase 2 (JAK2)/signal transducer and activator of transcription 5 (STAT5) with no crosstalk to insulin receptor substrate-mediated mitogenic signalling. Biochemical Journal 1999, 344: 649-658. DOI: 10.1042/bj3440649.Peer-Reviewed Original ResearchINS-1 cell proliferationSignal transduction pathwaysΒ-cell proliferationSignal transductionCell proliferationKinase 2Sevenless-1 proteinMitogenic signal transduction pathwaysJAK2/STAT5 pathwayΒ-cellsMitogen-activated protein kinaseRat growth hormoneJAK2/STAT5Rat β-cell linePancreatic β-cell proliferationΒ-cell lineMitogenic signalingS6 kinaseProtein kinaseProtein associationTranscription 5Pancreatic β-cellsReceptor substrateKinase activationDifferent mitogenic
1997
The IRS-2 gene on murine chromosome 8 encodes a unique signaling adapter for insulin and cytokine action.
Sun X, Pons S, Wang L, Zhang Y, Yenush L, Burks D, Myers M, Glasheen E, Copeland N, Jenkins N, Pierce J, White M. The IRS-2 gene on murine chromosome 8 encodes a unique signaling adapter for insulin and cytokine action. Endocrinology 1997, 11: 251-62. PMID: 9013772, DOI: 10.1210/mend.11.2.9885.Peer-Reviewed Original ResearchMeSH Keywords3T3 CellsAmino Acid SequenceAnimalsBase SequenceCell DifferentiationCells, CulturedChromosome MappingChromosomesCytokinesInsulinInsulin Receptor Substrate ProteinsInterleukin-4Intracellular Signaling Peptides and ProteinsMiceMolecular Sequence DataPhosphoproteinsPhosphorylationSequence Homology, Amino AcidSignal TransductionTissue DistributionTyrosineConceptsMurine chromosome 8IRS-2IRS-1IRS-2 geneIRS proteinsExpression patternsSrc homology 2 domainChromosome 8Recombinant SH2 domainsSpecific expression patternsMurine chromosome 1Amino acid sequenceDifferential tyrosine phosphorylationMurine hematopoietic cellsDistinct phosphorylation patternsSH2 domainSignal transductionSingle exonPhosphorylation patternTyrosine phosphorylationIL-4 stimulationAcid sequenceChromosome 1Signaling adapterCytokine signaling
1996
Insulin Signal Transduction and the IRS Proteins
Myers M, White M. Insulin Signal Transduction and the IRS Proteins. The Annual Review Of Pharmacology And Toxicology 1996, 36: 615-658. PMID: 8725404, DOI: 10.1146/annurev.pa.36.040196.003151.Peer-Reviewed Original ResearchConceptsIRS proteinsIntracellular tyrosine kinaseBinding of SH2Numerous intracellular signalsTyrosine phosphorylation sitesReceptor-mediated phosphorylationInsulin signal transductionPTB domainCellular physiologyPhosphorylation sitesSignal transductionIntracellular signalsExtracellular domainTyrosine kinaseCytokine receptorsBiochemical eventsInsulin receptorGlucose transportProteinPhosphorylationSignalingGrowth factorSpecific receptorsExciting moleculesPropagation of signals
1991
The Juxtamembrane Regions of the Epidermal Growth Factor Receptor and gpl85 erbB-2 Determine the Specificity of Signal Transduction
Segatto O, Lonardo F, Wexler D, Fazioli F, Pierce J, Bottaro D, White M, Di Fiore P. The Juxtamembrane Regions of the Epidermal Growth Factor Receptor and gpl85 erbB-2 Determine the Specificity of Signal Transduction. Molecular And Cellular Biology 1991, 11: 3191-3202. DOI: 10.1128/mcb.11.6.3191-3202.1991.Peer-Reviewed Original ResearchEpidermal growth factor receptorSignal transductionSpecificity of substrate recognitionErbB-2Specificity of signal transductionAmino-terminal halfDeletion of residuesMitogenic signaling pathwaysMitogenic signal transductionEGFR kinaseGrowth factor receptorSubstrate recognitionTyrosine kinase domainJuxtamembrane regionKinase domainStructural homologyKinase propertiesFactor receptorMutation analysisSignaling pathwayTyrosine kinaseChimeric moleculesKinaseTyrosineTransduction