2017
Using In Vivo and Tissue and Cell Explant Approaches to Study the Morphogenesis and Pathogenesis of the Embryonic and Perinatal Aorta.
Misra A, Feng Z, Zhang J, Lou ZY, Greif DM. Using In Vivo and Tissue and Cell Explant Approaches to Study the Morphogenesis and Pathogenesis of the Embryonic and Perinatal Aorta. Journal Of Visualized Experiments 2017 PMID: 28930997, PMCID: PMC5752224, DOI: 10.3791/56039.Peer-Reviewed Original ResearchConceptsSmooth muscle cellsAortic smooth muscle cellsPregnant micePharmacological agentsAortic wallAortaLarge arteriesAdult aortaMuscle cellsEndothelial cellsPathological modelsHypothesis-generating experimentsContinuous exposureCell explantsTissue explantsPathogenesisFate mappingSpecific gene targetsClonal analysisNormal developmentVivoGene targetsExtracellular matrixClonal architectureCells
2016
Integrin β3 inhibition is a therapeutic strategy for supravalvular aortic stenosis
Misra A, Sheikh AQ, Kumar A, Luo J, Zhang J, Hinton RB, Smoot L, Kaplan P, Urban Z, Qyang Y, Tellides G, Greif DM. Integrin β3 inhibition is a therapeutic strategy for supravalvular aortic stenosis. Journal Of Experimental Medicine 2016, 213: 451-463. PMID: 26858344, PMCID: PMC4813675, DOI: 10.1084/jem.20150688.Peer-Reviewed Original ResearchConceptsSmooth muscle cellsMutant miceTherapeutic strategiesAortic stenosis patientsAortic smooth muscle cellsSupravalvular aortic stenosisAttractive therapeutic strategyIntegrin β3 levelsAortic pathologyAortic stenosisStenosis patientsArterial diseaseLumen lossPathological featuresArterial mediaLarge arteriesAortic mediaElastin deficiencyPharmacological inhibitionMuscle cellsStenosisMicePathological stenosisExplant culturesSVAS patients
2014
Netrin-1 controls sympathetic arterial innervation
Brunet I, Gordon E, Han J, Cristofaro B, Broqueres-You D, Liu C, Bouvrée K, Zhang J, del Toro R, Mathivet T, Larrivée B, Jagu J, Pibouin-Fragner L, Pardanaud L, Machado MJ, Kennedy TE, Zhuang Z, Simons M, Levy BI, Tessier-Lavigne M, Grenz A, Eltzschig H, Eichmann A. Netrin-1 controls sympathetic arterial innervation. Journal Of Clinical Investigation 2014, 124: 3230-3240. PMID: 24937433, PMCID: PMC4071369, DOI: 10.1172/jci75181.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, NewbornDCC ReceptorFemaleGrowth ConesMaleMesenteric ArteriesMiceMice, KnockoutMice, Mutant StrainsMice, TransgenicModels, NeurologicalMyocytes, Smooth MuscleNerve Growth FactorsNetrin-1PregnancyReceptors, Cell SurfaceSympathetic Nervous SystemTumor Suppressor ProteinsVasoconstrictionConceptsSmooth muscle cellsArterial innervationNetrin-1Resistance arteriesAutonomic sympathetic nervesArterial smooth muscle cellsPeripheral resistance arteriesBlood flow regulationOnset of innervationBlood flow controlCell type-specific deletionAxon guidance cue netrin-1Guidance cue netrin-1Sympathetic nervesSympathetic innervationVascular toneColorectal cancerPeripheral organsSympathetic neuronsBlood supplyInnervationMuscle cellsSympathetic growth conesArteryGrowth cones
2013
Endothelial Cell–Dependent Regulation of Arteriogenesis
Moraes F, Paye J, Mac Gabhann F, Zhuang ZW, Zhang J, Lanahan AA, Simons M. Endothelial Cell–Dependent Regulation of Arteriogenesis. Circulation Research 2013, 113: 1076-1086. PMID: 23897694, PMCID: PMC3865810, DOI: 10.1161/circresaha.113.301340.Peer-Reviewed Original ResearchConceptsAdult arteriogenesisCell-autonomous fashionGrowth factor signalingMouse linesCell-autonomous effectsKnockin mouse lineMorphogenetic defectsArterial morphogenesisCell type-specific deletionFactor signalingCell typesCre-driver mouse linesSynectinAttractive therapeutic strategyOcclusive atherosclerotic diseaseMuscle cellsEndothelial cellsRegulationArterial conduitsAtherosclerotic diseaseTherapeutic strategiesAdult miceClinical importanceArteriogenesisCells