2019
Cellular Genes Involved in Redox Regulation Are Altered by Inhibitors of Epstein‐Barr Virus Lytic Gene Expression
Gorres K, Miller G. Cellular Genes Involved in Redox Regulation Are Altered by Inhibitors of Epstein‐Barr Virus Lytic Gene Expression. The FASEB Journal 2019, 33: 458.11-458.11. DOI: 10.1096/fasebj.2019.33.1_supplement.458.11.Peer-Reviewed Original ResearchViral lytic gene expressionLytic gene expressionCellular genesGene expressionViral lytic cycleLytic cycleEpstein-Barr virusNext-generation RNA sequencingViral immediate-early genesCellular gene expressionImmediate early genesRedox regulationTranscription factorsRNA sequencingCellular pathwaysGenesEnvironmental stimuliHuman cancersRedox statusMore virionsEBV-positive cellsFASEB JournalFull-text articlesExpressionViral lytic cascade
2001
Autostimulation of the Epstein-Barr Virus BRLF1 Promoter Is Mediated through Consensus Sp1 and Sp3 Binding Sites
Ragoczy T, Miller G. Autostimulation of the Epstein-Barr Virus BRLF1 Promoter Is Mediated through Consensus Sp1 and Sp3 Binding Sites. Journal Of Virology 2001, 75: 5240-5251. PMID: 11333906, PMCID: PMC114930, DOI: 10.1128/jvi.75.11.5240-5251.2001.Peer-Reviewed Original ResearchMeSH KeywordsBase SequenceBinding SitesB-LymphocytesCell Line, TransformedDNA-Binding ProteinsGene DeletionGene Expression Regulation, ViralHerpesvirus 4, HumanHeterotrimeric GTP-Binding ProteinsHumansImmediate-Early ProteinsMolecular Sequence DataMutagenesis, Site-DirectedPromoter Regions, GeneticProtein BindingReceptors, Cell SurfaceSp1 Transcription FactorSp3 Transcription FactorTrans-ActivatorsTranscription FactorsViral ProteinsVirus ActivationConceptsSp1/Sp3 siteLytic cycleSp3 transcription factorsBinding of Sp1Transcriptional start siteSite-directed mutagenesisGel shift analysisBRLF1 promoterReporter-based assaysEpstein–Barr virus Rta proteinCellular Sp1Own geneConsensus Sp1Transcriptional activationCellular proteinsTranscription factorsStart siteDNA bindingOwn expressionMutagenesis studiesRta proteinSp1Reporter activityTranscription factor Zif268B cells