2024
A review of current practice in the design and analysis of extremely small stepped-wedge cluster randomized trials.
Tong G, Nevins P, Ryan M, Davis-Plourde K, Ouyang Y, Pereira Macedo J, Meng C, Wang X, Caille A, Li F, Taljaard M. A review of current practice in the design and analysis of extremely small stepped-wedge cluster randomized trials. Clinical Trials 2024, 17407745241276137. PMID: 39377196, DOI: 10.1177/17407745241276137.Peer-Reviewed Original ResearchSmall-sample correctionsStepped-wedge cluster randomized trialCluster randomized trialSample size calculation methodGeneralized linear mixed modelsLongitudinal correlation structureSize calculation methodLinear mixed modelsPermutation testSample sizeBayesian approachRandomized trialsCorrelation structureMixed modelsBayesian analysisGeneralized estimating equationsPermutationMedian sample sizeIntervention conditionRandomization methodEquationsHow to achieve model-robust inference in stepped wedge trials with model-based methods?
Wang B, Wang X, Li F. How to achieve model-robust inference in stepped wedge trials with model-based methods? Biometrics 2024, 80: ujae123. PMID: 39499239, PMCID: PMC11536888, DOI: 10.1093/biomtc/ujae123.Peer-Reviewed Original ResearchConceptsTreatment effect estimandsWorking correlation structureSandwich variance estimatorExchangeable working correlation structureFunction of calendar timeEffect estimandsVariance estimationLink functionStepped wedge trialEstimandsTheoretical resultsCorrelation structureWedge trialsEstimating equationsCluster randomized trialG-computationLinear mixed modelsInferencePotential outcomesMisspecificationEstimationEffective structureModel-based methodsGeneralized estimating equationsMixed modelsMaintaining the validity of inference from linear mixed models in stepped-wedge cluster randomized trials under misspecified random-effects structures
Ouyang Y, Taljaard M, Forbes A, Li F. Maintaining the validity of inference from linear mixed models in stepped-wedge cluster randomized trials under misspecified random-effects structures. Statistical Methods In Medical Research 2024, 33: 1497-1516. PMID: 38807552, PMCID: PMC11499024, DOI: 10.1177/09622802241248382.Peer-Reviewed Original ResearchRandom effects structureVariance estimationComplex correlation structureRobust variance estimationFixed effects parametersDegrees of freedom correctionCluster randomized trialEstimates of standard errorsCorrelation structureRandom effectsStepped-wedge cluster randomized trialComprehensive simulation studyLinear mixed modelsStatistical inferenceRandom intercept modelSimulation studyMixed modelsMisspecificationValidity of inferencesRandom interceptContinuous outcomesEstimationComputational challengesIntercept modelStandard errorSample size and power calculation for testing treatment effect heterogeneity in cluster randomized crossover designs
Wang X, Chen X, Goldfeld K, Taljaard M, Li F. Sample size and power calculation for testing treatment effect heterogeneity in cluster randomized crossover designs. Statistical Methods In Medical Research 2024, 33: 1115-1136. PMID: 38689556, PMCID: PMC11347095, DOI: 10.1177/09622802241247736.Peer-Reviewed Original ResearchCluster randomized crossover designSample size formulaTreatment effect heterogeneityAverage treatment effectHeterogeneity of treatment effectsSize formulaRandomized crossover designCluster-randomized crossover trialRandomized crossover trialEffect heterogeneitySampling schemeCluster randomized designTreatment effectsDifferential treatment effectsCrossover designFormulaContinuous outcomesLinear mixed modelsSample sizeCrossover trialInteraction testMixed modelsCovariatesClinical characteristicsStatistical methods
2023
Sample size requirements for testing treatment effect heterogeneity in cluster randomized trials with binary outcomes
Maleyeff L, Wang R, Haneuse S, Li F. Sample size requirements for testing treatment effect heterogeneity in cluster randomized trials with binary outcomes. Statistics In Medicine 2023, 42: 5054-5083. PMID: 37974475, PMCID: PMC10659142, DOI: 10.1002/sim.9901.Peer-Reviewed Original ResearchConceptsSample size proceduresSize proceduresEfficient Monte Carlo approachTreatment effect heterogeneitySample size methodsMonte Carlo approachContinuous effect modifiersBinary outcomesEffect heterogeneityCarlo approachNumerical illustrationsNecessary sample sizeGeneralized linear mixed modelLinear mixed modelsPopular classSample size requirementsStatistical powerAverage treatment effectHeterogeneous treatment effectsSample size calculationMixed modelsSize methodSize calculationSize requirementsCluster Randomized Trial
2022
Power analyses for stepped wedge designs with multivariate continuous outcomes
Davis‐Plourde K, Taljaard M, Li F. Power analyses for stepped wedge designs with multivariate continuous outcomes. Statistics In Medicine 2022, 42: 559-578. PMID: 36565050, PMCID: PMC9985483, DOI: 10.1002/sim.9632.Peer-Reviewed Original ResearchConceptsMultivariate outcomesMultivariate linear mixed modelIntracluster correlation coefficientSample size proceduresClosed cohort designRigorous justificationSample size calculation procedureTreatment effect estimatorJoint distributionSize proceduresTest statisticLinear mixed modelsEfficient treatment effect estimatorsCommon treatment effectMixed modelsCalculation procedureExtensive simulationsEffects estimatorIntersection-union testPower analysisEstimatorWedge designEfficient powerModelContinuous outcomesPower Analysis for Cluster Randomized Trials with Continuous Coprimary Endpoints
Yang S, Moerbeek M, Taljaard M, Li F. Power Analysis for Cluster Randomized Trials with Continuous Coprimary Endpoints. Biometrics 2022, 79: 1293-1305. PMID: 35531926, PMCID: PMC11321238, DOI: 10.1111/biom.13692.Peer-Reviewed Original ResearchConceptsMultivariate linear mixed modelTreatment effect estimatorJoint distributionEqual cluster sizesCluster sizeExpectation-maximization algorithmFinite numberEffects estimatorEmpirical powerCorrelation parametersPower analysisEstimatorSize assumptionsSample sizeNull hypothesisPower calculationPower determinationLinear mixed modelsParametersMixed models