2024
Noise-aware dynamic image denoising and positron range correction for Rubidium-82 cardiac PET imaging via self-supervision
Xie H, Guo L, Velo A, Liu Z, Liu Q, Guo X, Zhou B, Chen X, Tsai Y, Miao T, Xia M, Liu Y, Armstrong I, Wang G, Carson R, Sinusas A, Liu C. Noise-aware dynamic image denoising and positron range correction for Rubidium-82 cardiac PET imaging via self-supervision. Medical Image Analysis 2024, 100: 103391. PMID: 39579623, DOI: 10.1016/j.media.2024.103391.Peer-Reviewed Original ResearchImage denoisingPositron range correctionDynamic framesSelf-supervised methodsSuperior visual qualityLow signal-to-noise ratioCardiac PET imagingDenoising methodSignal-to-noise ratioSelf-supervisionVisual qualityHigh-energy positronsRange correctionsDenoisingNoise levelImage spatial resolutionImage qualityDefect contrastPET imagingImage quantificationRadioactive isotopesPatient scansQuantitative accuracyImagesFrameDose-aware Diffusion Model for 3D Low-count Cardiac SPECT Image Denoising with Projection-domain Consistency
Xie H, Gan W, Chen X, Zhou B, Liu Q, Xia M, Guo X, Liu Y, An H, Kamilov U, Wang G, Sinusas A, Liu C. Dose-aware Diffusion Model for 3D Low-count Cardiac SPECT Image Denoising with Projection-domain Consistency. 2024, 00: 1-1. DOI: 10.1109/nss/mic/rtsd57108.2024.10655170.Peer-Reviewed Original ResearchImage denoisingImage denoising performanceDeep learning techniquesNoise-levelDenoising performanceDenoising resultsNeural networkLearning techniquesSPECT imagesLow count levelsSPECT scansDenoisingSampling stepIterative reconstructionNoise amplitudeImagesInjected dosePatient studiesDiffusion modelRadiation exposureCardiology studiesSPECTNetworkStochastic natureMLEMAnatomically and Metabolically Informed Deep Learning Low-Count PET Image Denoising
Xia M, Xie H, Liu Q, Guo L, Ouyang J, Bayerlein R, Spencer B, Badawi R, Li Q, Fakhri G, Liu C. Anatomically and Metabolically Informed Deep Learning Low-Count PET Image Denoising. 2024, 00: 1-2. DOI: 10.1109/nss/mic/rtsd57108.2024.10657099.Peer-Reviewed Original ResearchDeep learningOver-smoothed imagesDL training processesHigh-count imagesImage denoisingDenoised imageLow-count dataSemantic informationSemantic classesSegmentation guidanceTraining processPET/CT systemHistogram distributionImage qualitySegmentation toolPositron emission tomographyImagesDenoisingDatasetHistogramPriorsRadiation exposure
2022
An Adaptive Patch Sampling Scheme for Deep Learning Based PET Image Denoising
Wu J, Tan H, Liu H, Liu C, Onofrey J. An Adaptive Patch Sampling Scheme for Deep Learning Based PET Image Denoising. 2022, 00: 1-3. DOI: 10.1109/nss/mic44845.2022.10399313.Peer-Reviewed Original ResearchOver-smoothing effectSignal-to-noise ratioU-NetImage denoisingDeep learning-based approachPET image denoisingL1 loss functionPatch-based strategyLearning-based approachSampling schemeMean square errorHigh signal-to-noise ratioDenoising performanceLow-dose PET imagesNetwork trainingWeight mapData augmentationDenoisingLoss functionNetworkImage noiseSquare errorPatch samplesSampling rateScheme
2021
Artificial Intelligence-Based Image Enhancement in PET Imaging Noise Reduction and Resolution Enhancement
Liu J, Malekzadeh M, Mirian N, Song TA, Liu C, Dutta J. Artificial Intelligence-Based Image Enhancement in PET Imaging Noise Reduction and Resolution Enhancement. PET Clinics 2021, 16: 553-576. PMID: 34537130, PMCID: PMC8457531, DOI: 10.1016/j.cpet.2021.06.005.Peer-Reviewed Original ResearchConceptsArtificial intelligence modelsImage enhancementIntelligence modelsArtificial intelligenceNetwork architectureEvaluation metricsLarge-scale adoptionData typesImage denoisingLoss functionPET imagesLow spatial resolutionHigh noiseResolution enhancementImagesIntelligenceDeblurringArchitectureDenoisingNoise reductionMetricsPopularityRecent effortsFuture directionsAccuracy