2017
Current Challenges and New Opportunities for Gene-Environment Interaction Studies of Complex Diseases
McAllister K, Mechanic L, Amos C, Aschard H, Blair I, Chatterjee N, Conti D, Gauderman W, Hsu L, Hutter C, Jankowska M, Kerr J, Kraft P, Montgomery S, Mukherjee B, Papanicolaou G, Patel C, Ritchie M, Ritz B, Thomas D, Wei P, Witte J, participants O. Current Challenges and New Opportunities for Gene-Environment Interaction Studies of Complex Diseases. American Journal Of Epidemiology 2017, 186: 753-761. PMID: 28978193, PMCID: PMC5860428, DOI: 10.1093/aje/kwx227.Peer-Reviewed Original ResearchConceptsGene-environment interaction studiesStudies of complex diseasesGene-environmentAmerican Society of Human Genetics meetingMeasures of environmental exposureGene-environment interactionsComplex diseasesNational Institute of Environmental Health SciencesNational Cancer InstituteEnvironmental Health SciencesStudy designHealth SciencesCancer InstituteEnvironmental exposuresEnvironmental exposure assessmentNational InstituteLarge-scale studiesExposure assessmentNext-generation sequencing dataDisease outcomeNationalSequence dataThemesStudies of human populationsParticipants
2014
The Role of Environmental Heterogeneity in Meta‐Analysis of Gene–Environment Interactions With Quantitative Traits
Li S, Mukherjee B, Taylor J, Rice K, Wen X, Rice J, Stringham H, Boehnke M. The Role of Environmental Heterogeneity in Meta‐Analysis of Gene–Environment Interactions With Quantitative Traits. Genetic Epidemiology 2014, 38: 416-429. PMID: 24801060, PMCID: PMC4108593, DOI: 10.1002/gepi.21810.Peer-Reviewed Original ResearchMeSH KeywordsAlpha-Ketoglutarate-Dependent Dioxygenase FTOBiasBody Mass IndexCase-Control StudiesCholesterol, HDLCohort StudiesDiabetes Mellitus, Type 2Gene FrequencyGene-Environment InteractionGenetic Predisposition to DiseaseHumansMeta-Analysis as TopicModels, GeneticPhenotypePolymorphism, Single NucleotideProteinsQuantitative Trait, HeritableConceptsIndividual level dataMeta-analysisInverse-variance weighted meta-analysisEnvironmental heterogeneityGene-environment interaction studiesInverse-variance weighted estimatorMeta-analysis of interactionsStudy of type 2 diabetesGene-environment interactionsBody mass indexMeta-regression approachSingle nucleotide polymorphismsAdaptive weighted estimatorFTO geneType 2 diabetesMass indexMeta-regressionQuantitative traitsSummary statisticsCholesterol dataNucleotide polymorphismsLevel dataUnivariate summary statisticsData harmonizationEnvironmental covariates
2013
Environmental Confounding in Gene-Environment Interaction Studies
Vanderweele T, Ko Y, Mukherjee B. Environmental Confounding in Gene-Environment Interaction Studies. American Journal Of Epidemiology 2013, 178: 144-152. PMID: 23821317, PMCID: PMC3698991, DOI: 10.1093/aje/kws439.Peer-Reviewed Original ResearchConceptsGene-environment independenceGene-environment interaction studiesGene-environment interactionsEnvironmental confoundersGenetic factorsJoint testGene-environmentGenetic effectsEnvironmental factorsConfounding variablesConfoundingInteraction studiesSimulation studyJoint nullSample sizeBias estimatesFactorsIndependenceStudyTest
2012
Efficient designs of gene–environment interaction studies: implications of Hardy–Weinberg equilibrium and gene–environment independence
Chen J, Kang G, VanderWeele T, Zhang C, Mukherjee B. Efficient designs of gene–environment interaction studies: implications of Hardy–Weinberg equilibrium and gene–environment independence. Statistics In Medicine 2012, 31: 2516-2530. PMID: 22362617, PMCID: PMC3448495, DOI: 10.1002/sim.4460.Peer-Reviewed Original ResearchConceptsPresence of G-E interactionsG-E interactionsSubsample of casesGene-environmentHardy-Weinberg equilibriumG-E independenceGene-environment interaction studiesGene-environment independenceRandom subsampleGenetic susceptibility variantsCase-control sampleEnvironmental risk factorsSusceptibility variantsExternal control dataRisk factorsGenetic effectsWald statisticInteraction studiesSubsampleVariable EControl dataEnvironmental effectsIndependenceDataWald