2020
Molecular mechanism for rotational switching of the bacterial flagellar motor
Chang Y, Zhang K, Carroll BL, Zhao X, Charon NW, Norris SJ, Motaleb MA, Li C, Liu J. Molecular mechanism for rotational switching of the bacterial flagellar motor. Nature Structural & Molecular Biology 2020, 27: 1041-1047. PMID: 32895555, PMCID: PMC8129871, DOI: 10.1038/s41594-020-0497-2.Peer-Reviewed Original ResearchConceptsBacterial flagellar motorSwitch proteinFlagellar motorResponse regulator CheYRotational switchingProton motive forceSwitch complexMolecular mechanismsPhosphorylated formMajor remodelingConformational changesMotive forceModel systemProteinBorrelia burgdorferiCheY3CheYMutantsTorque generatorFLIMInteractsCheXCW rotationMechanismRemodelingSubnanometer structures of HIV-1 envelope trimers on aldrithiol-2-inactivated virus particles
Li Z, Li W, Lu M, Bess J, Chao CW, Gorman J, Terry DS, Zhang B, Zhou T, Blanchard SC, Kwong PD, Lifson JD, Mothes W, Liu J. Subnanometer structures of HIV-1 envelope trimers on aldrithiol-2-inactivated virus particles. Nature Structural & Molecular Biology 2020, 27: 726-734. PMID: 32601441, PMCID: PMC8138683, DOI: 10.1038/s41594-020-0452-2.Peer-Reviewed Original ResearchAnalysis of Dot/Icm Type IVB Secretion System Subassemblies by Cryoelectron Tomography Reveals Conformational Changes Induced by DotB Binding
Park D, Chetrit D, Hu B, Roy CR, Liu J. Analysis of Dot/Icm Type IVB Secretion System Subassemblies by Cryoelectron Tomography Reveals Conformational Changes Induced by DotB Binding. MBio 2020, 11: 10.1128/mbio.03328-19. PMID: 32071271, PMCID: PMC7029142, DOI: 10.1128/mbio.03328-19.Peer-Reviewed Original ResearchConceptsType IV secretion systemSecretion systemCryoelectron tomographyInner membraneDot/Icm apparatusConformational changesDot/IcmEukaryotic host cellsBacterial inner membraneWild-type cellsHost cell membraneWhole-cell contextMultiprotein nanomachineSubtomogram analysisSophisticated nanomachinesCytoplasmic substratesProtein effectorsCell polesDNA substratesSubtomogram averagingATPase complexDNA transferHost infectionStructural basisHost cellsIn Situ Structure of the Vibrio Polar Flagellum Reveals a Distinct Outer Membrane Complex and Its Specific Interaction with the Stator
Zhu S, Nishikino T, Takekawa N, Terashima H, Kojima S, Imada K, Homma M, Liu J. In Situ Structure of the Vibrio Polar Flagellum Reveals a Distinct Outer Membrane Complex and Its Specific Interaction with the Stator. Journal Of Bacteriology 2020, 202: 10.1128/jb.00592-19. PMID: 31767780, PMCID: PMC6989802, DOI: 10.1128/jb.00592-19.Peer-Reviewed Original ResearchConceptsProtein-protein interactionsCryo-electron tomographyStator unitsFlagellar rotationDetailed protein-protein interactionsUnique protein-protein interactionsGram-negative marine bacteriumPolar sheathed flagellumBasal body structureHigh-speed motilityBacterial flagellar motorLarge conformational changesSpecific interactionsFirst structural evidencePeriplasmic domainPolar flagellumFlagellar motorPeptidoglycan layerMembrane complexT ringMarine bacteriumBacterial flagellaGenetic analysisDetailed structural informationSheathed flagellum
2019
Structural dynamics of bacteriophage P22 infection initiation revealed by cryo-electron tomography
Wang C, Tu J, Liu J, Molineux IJ. Structural dynamics of bacteriophage P22 infection initiation revealed by cryo-electron tomography. Nature Microbiology 2019, 4: 1049-1056. PMID: 30886360, PMCID: PMC6533119, DOI: 10.1038/s41564-019-0403-z.Peer-Reviewed Original ResearchConceptsCryo-electron tomographyOuter membraneInfection initiationCell surfaceBacterial cell envelopeSalmonella enterica serovar TyphimuriumGenome translocationGram-negative bacteriaEnterica serovar TyphimuriumTail needleCytoplasmic membraneSecond proteinExtracellular channelsCell envelopePhage P22Successful infectionCell cytoplasmSerovar TyphimuriumSuch virionsGenomeCytoplasmProteinO-antigenPhagesAssembles
2008
Integrin αIIbβ3 in a Membrane Environment Remains the Same Height after Mn2+ Activation when Observed by Cryoelectron Tomography
Ye F, Liu J, Winkler H, Taylor KA. Integrin αIIbβ3 in a Membrane Environment Remains the Same Height after Mn2+ Activation when Observed by Cryoelectron Tomography. Journal Of Molecular Biology 2008, 378: 976-986. PMID: 18405917, PMCID: PMC2614134, DOI: 10.1016/j.jmb.2008.03.014.Peer-Reviewed Original ResearchMeSH KeywordsCell MembraneHumansLiposomesManganeseModels, MolecularPlatelet Glycoprotein GPIIb-IIIa ComplexProtein ConformationTomography
2004
A 3-D Reconstruction of Smooth Muscle α-Actinin by CryoEm Reveals Two Different Conformations at the Actin-binding Region
Liu J, Taylor DW, Taylor KA. A 3-D Reconstruction of Smooth Muscle α-Actinin by CryoEm Reveals Two Different Conformations at the Actin-binding Region. Journal Of Molecular Biology 2004, 338: 115-125. PMID: 15050827, DOI: 10.1016/j.jmb.2004.02.034.Peer-Reviewed Original Research