Featured Publications
Detection of left ventricular systolic dysfunction from single-lead electrocardiography adapted for portable and wearable devices
Khunte A, Sangha V, Oikonomou E, Dhingra L, Aminorroaya A, Mortazavi B, Coppi A, Brandt C, Krumholz H, Khera R. Detection of left ventricular systolic dysfunction from single-lead electrocardiography adapted for portable and wearable devices. Npj Digital Medicine 2023, 6: 124. PMID: 37433874, PMCID: PMC10336107, DOI: 10.1038/s41746-023-00869-w.Peer-Reviewed Original ResearchArtificial intelligenceRandom Gaussian noiseNoisy electrocardiogramGaussian noiseElectrocardiogram (ECGWearable devicesSingle-lead electrocardiogramPortable devicesSNRWearableNoiseDevice noiseRepositoryAI-based screeningIntelligenceDetectionDevicesNoise sourcesVentricular systolic dysfunctionModelElectrocardiogramSingle-lead electrocardiographyTrainingDetection of Left Ventricular Systolic Dysfunction From Electrocardiographic Images
Sangha V, Nargesi A, Dhingra L, Khunte A, Mortazavi B, Ribeiro A, Banina E, Adeola O, Garg N, Brandt C, Miller E, Ribeiro A, Velazquez E, Giatti L, Barreto S, Foppa M, Yuan N, Ouyang D, Krumholz H, Khera R. Detection of Left Ventricular Systolic Dysfunction From Electrocardiographic Images. Circulation 2023, 148: 765-777. PMID: 37489538, PMCID: PMC10982757, DOI: 10.1161/circulationaha.122.062646.Peer-Reviewed Original ResearchConceptsLV systolic dysfunctionYale-New Haven HospitalVentricular systolic dysfunctionSystolic dysfunctionLV ejection fractionBrazilian Longitudinal StudyNew Haven HospitalEjection fractionCardiology clinicRegional hospitalLeft ventricular systolic dysfunctionCedars-Sinai Medical CenterAdult Health (ELSA-Brasil) cohortIndividualising intensive systolic blood pressure reduction in hypertension using computational trial phenomaps and machine learning: a post-hoc analysis of randomised clinical trials
Oikonomou EK, Spatz ES, Suchard MA, Khera R. Individualising intensive systolic blood pressure reduction in hypertension using computational trial phenomaps and machine learning: a post-hoc analysis of randomised clinical trials. The Lancet Digital Health 2022, 4: e796-e805. PMID: 36307193, PMCID: PMC9768739, DOI: 10.1016/s2589-7500(22)00170-4.Peer-Reviewed Original ResearchConceptsSystolic blood pressure controlBlood pressure controlIntensive systolic blood pressure controlType 2 diabetesPressure controlCardiovascular benefitsClinical trialsMajor adverse cardiovascular eventsFirst major adverse cardiovascular eventLarge randomised clinical trialsACCORD-BP trialAdverse cardiovascular eventsRandomised clinical trialsSystolic blood pressureCox regression analysisTreatment effectsHazard ratio estimatesACCORD-BPBP trialCardiovascular eventsBlood pressurePrimary outcomeStandard treatmentBaseline variablesIndex patients
2024
A Multicenter Evaluation of the Impact of Therapies on Deep Learning-Based Electrocardiographic Hypertrophic Cardiomyopathy Markers
Dhingra L, Sangha V, Aminorroaya A, Bryde R, Gaballa A, Ali A, Mehra N, Krumholz H, Sen S, Kramer C, Martinez M, Desai M, Oikonomou E, Khera R. A Multicenter Evaluation of the Impact of Therapies on Deep Learning-Based Electrocardiographic Hypertrophic Cardiomyopathy Markers. The American Journal Of Cardiology 2024, 237: 35-40. PMID: 39581517, DOI: 10.1016/j.amjcard.2024.11.028.Peer-Reviewed Original ResearchCleveland Clinic FoundationHypertrophic cardiomyopathyMedian follow-up periodHypertrophic cardiomyopathy therapyMonitoring treatment responseFollow-up periodImpact of therapyAtlantic Health SystemLack of improvementOral alternativePost-SRTMedical therapyTreatment responseMulticenter evaluationInterventricular septumPercutaneous reductionMavacamtenTherapyPatientsClinic FoundationPoint-of-care monitoringECGECG imagesScoresHealth systemArtificial Intelligence Applications for Electrocardiography to Define New Digital Biomarkers of Cardiovascular Risk.
Sangha V, Khera R. Artificial Intelligence Applications for Electrocardiography to Define New Digital Biomarkers of Cardiovascular Risk. Circulation Cardiovascular Quality And Outcomes 2024, e011483. PMID: 39540286, DOI: 10.1161/circoutcomes.124.011483.Commentaries, Editorials and LettersExpanding artificial intelligence to understudied populations: congenital heart disease as the next frontier
Oikonomou E, Khera R. Expanding artificial intelligence to understudied populations: congenital heart disease as the next frontier. European Heart Journal 2024, ehae737. PMID: 39523016, DOI: 10.1093/eurheartj/ehae737.Commentaries, Editorials and LettersImpact of the COVID-19 pandemic on hospital-based heart failure care in New South Wales, Australia: a linked data cohort study
McIntyre D, Quintans D, Kazi S, Min H, He W, Marschner S, Khera R, Nassar N, Chow C. Impact of the COVID-19 pandemic on hospital-based heart failure care in New South Wales, Australia: a linked data cohort study. BMC Health Services Research 2024, 24: 1364. PMID: 39516863, PMCID: PMC11545568, DOI: 10.1186/s12913-024-11840-0.Peer-Reviewed Original ResearchConceptsHeart failure careNew South WalesHospital admissionHealth service utilisationAdministrative health recordsPrimary diagnosis of heart failureData cohort studyRate of admissionPre-pandemicHealth of patientsSouth WalesCOVID-19 pandemicHospital utilisationService utilisationHealth recordsED presentationsMortality dataDiagnosis of heart failureCOVID-19 burdenEmergency departmentCohort studyPrimary diagnosisData collectionCareAustralian dataValidating International Classification of Diseases Code (ICD) 10th Revision Algorithms for Accurate Identification of Pulmonary Embolism
Bikdeli B, Khairani C, Bejjani A, Lo Y, Mahajan S, Caraballo C, Jimenez J, Krishnathasan D, Zarghami M, Rashedi S, Jimenez D, Barco S, Secemsky E, Klok F, Hunsaker A, Aghayev A, Muriel A, Hussain M, Appah-Sampong A, Lu Y, Lin Z, Mojibian H, Aneja S, Khera R, Konstantinides S, Goldhaber S, Wang L, Zhou L, Monreal M, Piazza G, Krumholz H, Investigators P. Validating International Classification of Diseases Code (ICD) 10th Revision Algorithms for Accurate Identification of Pulmonary Embolism. Journal Of Thrombosis And Haemostasis 2024 PMID: 39505153, DOI: 10.1016/j.jtha.2024.10.013.Peer-Reviewed Original ResearchDischarge codesInternational ClassificationICD-10Yale New Haven Health SystemPositive predictive valueMass General Brigham hospitalsAccuracy of ICD-10ICD-10 codesPulmonary embolismHealth systemImage codingElectronic databasesF1 scorePre-specified protocolExcellent positive predictive valueIndependent physiciansHighest F1 scoreIdentification of pulmonary embolismAcute pulmonary embolismSecondary codePE codesScoresIdentified PERevised algorithmNatural Language Processing of Clinical Documentation to Assess Functional Status in Patients With Heart Failure
Adejumo P, Thangaraj P, Dhingra L, Aminorroaya A, Zhou X, Brandt C, Xu H, Krumholz H, Khera R. Natural Language Processing of Clinical Documentation to Assess Functional Status in Patients With Heart Failure. JAMA Network Open 2024, 7: e2443925. PMID: 39509128, PMCID: PMC11544492, DOI: 10.1001/jamanetworkopen.2024.43925.Peer-Reviewed Original ResearchConceptsFunctional status assessmentArea under the receiver operating characteristic curveClinical documentationElectronic health record dataHF symptomsOptimal care deliveryHealth record dataAssess functional statusStatus assessmentClinical trial participationProcessing of clinical documentsFunctional status groupCare deliveryOutpatient careMain OutcomesMedical notesTrial participantsNew York Heart AssociationFunctional statusQuality improvementRecord dataHeart failureClinical notesDiagnostic studiesStatus groupsAutomated Identification of Heart Failure With Reduced Ejection Fraction Using Deep Learning-Based Natural Language Processing
Nargesi A, Adejumo P, Dhingra L, Rosand B, Hengartner A, Coppi A, Benigeri S, Sen S, Ahmad T, Nadkarni G, Lin Z, Ahmad F, Krumholz H, Khera R. Automated Identification of Heart Failure With Reduced Ejection Fraction Using Deep Learning-Based Natural Language Processing. JACC Heart Failure 2024 PMID: 39453355, DOI: 10.1016/j.jchf.2024.08.012.Peer-Reviewed Original ResearchReduced ejection fractionEjection fractionHeart failureLeft ventricular ejection fractionVentricular ejection fractionYale-New Haven HospitalIdentification of patientsCommunity hospitalIdentification of heart failureLanguage modelNorthwestern MedicineMeasure care qualityQuality of careNew Haven HospitalDeep learning-based natural language processingHFrEFGuideline-directed careDeep learning language modelsMIMIC-IIIDetect HFrEFNatural language processingReclassification improvementHospital dischargePatientsCare qualityRacial and Ethnic Disparities in Age-Specific All-Cause Mortality During the COVID-19 Pandemic
Faust J, Renton B, Bongiovanni T, Chen A, Sheares K, Du C, Essien U, Fuentes-Afflick E, Haywood T, Khera R, King T, Li S, Lin Z, Lu Y, Marshall A, Ndumele C, Opara I, Loarte-Rodriguez T, Sawano M, Taparra K, Taylor H, Watson K, Yancy C, Krumholz H. Racial and Ethnic Disparities in Age-Specific All-Cause Mortality During the COVID-19 Pandemic. JAMA Network Open 2024, 7: e2438918. PMID: 39392630, PMCID: PMC11581672, DOI: 10.1001/jamanetworkopen.2024.38918.Peer-Reviewed Original ResearchConceptsCOVID-19 public health emergencyNon-HispanicPublic health emergencyOther Pacific IslanderExcess mortalityAlaska NativesUS populationExcess deathsRates of excess mortalityCross-sectional study analyzed dataYears of potential lifeMortality relative riskNon-Hispanic whitesCross-sectional studyPacific IslandersStudy analyzed dataAll-cause mortalityEthnic groupsMortality disparitiesMortality ratioTotal populationDeath certificatesEthnic disparitiesMain OutcomesDecedent ageCardiovascular care with digital twin technology in the era of generative artificial intelligence
Thangaraj P, Benson S, Oikonomou E, Asselbergs F, Khera R. Cardiovascular care with digital twin technology in the era of generative artificial intelligence. European Heart Journal 2024, ehae619. PMID: 39322420, DOI: 10.1093/eurheartj/ehae619.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsGenerative artificial intelligenceCardiovascular careCardiovascular medicinePersonalized cardiovascular careArtificial intelligenceSimulations of clinical scenariosData modalitiesPrediction of disease riskClinical decision-makingIn silico replicationPersonalized patient careDigital twinClinical scenariosDigital twin technologyMulti-modal dataProcedural planningDiagnostic workflowDisease phenotypePatient careReviewer Experience Detecting and Judging Human Versus Artificial Intelligence Content: The Stroke Journal Essay Contest
Silva G, Khera R, Schwamm L, Acampa M, Adelman E, Boltze J, Broderick J, Brodtmann A, Christensen H, Dalli L, Duncan K, Elgendy I, Ergul A, Goldstein L, Hinkle J, Johansen M, Jood K, Kasner S, Levine S, Li Z, Lip G, Marsh E, Muir K, Ospel J, Pera J, Quinn T, Räty S, Ranta A, Richards L, Romero J, Willey J, Hillis A, Veerbeek J. Reviewer Experience Detecting and Judging Human Versus Artificial Intelligence Content: The Stroke Journal Essay Contest. Stroke 2024, 55: 2573-2578. PMID: 39224979, PMCID: PMC11529699, DOI: 10.1161/strokeaha.124.045012.Peer-Reviewed Original ResearchConceptsArtificial intelligenceEditorial board membersAuthor typeTraditional peer reviewLanguage modelIntelligent contentAuthor attributionGeneral textAI expertiseHuman authorityImproved accuracyAuthor's identityAuthor's manuscriptScientific journalsEssay contestPeer reviewPerception of qualityAuthorshipNature of authorshipIntelligenceLLMScientific writingScientific essayEssay qualityEssayCause-Specific Mortality Rates Among the US Black Population
Arun A, Caraballo C, Sawano M, Lu Y, Khera R, Yancy C, Krumholz H. Cause-Specific Mortality Rates Among the US Black Population. JAMA Network Open 2024, 7: e2436402. PMID: 39348122, PMCID: PMC11443349, DOI: 10.1001/jamanetworkopen.2024.36402.Commentaries, Editorials and LettersArtificial Intelligence-Enhanced Risk Stratification of Cancer Therapeutics-Related Cardiac Dysfunction Using Electrocardiographic Images.
Oikonomou E, Sangha V, Dhingra L, Aminorroaya A, Coppi A, Krumholz H, Baldassarre L, Khera R. Artificial Intelligence-Enhanced Risk Stratification of Cancer Therapeutics-Related Cardiac Dysfunction Using Electrocardiographic Images. Circulation Cardiovascular Quality And Outcomes 2024 PMID: 39221857, DOI: 10.1161/circoutcomes.124.011504.Peer-Reviewed Original ResearchCancer therapeutics-related cardiac dysfunctionGlobal longitudinal strainLeft ventricular systolic dysfunctionCardiac dysfunctionBreast cancerNon-Hodgkin lymphoma therapyNon-Hodgkin's lymphomaVentricular systolic dysfunctionAssociated with worse global longitudinal strainRisk stratification strategiesHigh-risk groupMonths post-treatmentPost hoc analysisElectrocardiographic (ECGTrastuzumab exposureLymphoma therapySystolic dysfunctionAI-ECGBefore treatmentRisk biomarkersLongitudinal strainLow riskStratification strategiesHigher incidencePositive screenComparative Effectiveness of Second-Line Antihyperglycemic Agents for Cardiovascular Outcomes A Multinational, Federated Analysis of LEGEND-T2DM
Khera R, Aminorroaya A, Dhingra L, Thangaraj P, Pedroso Camargos A, Bu F, Ding X, Nishimura A, Anand T, Arshad F, Blacketer C, Chai Y, Chattopadhyay S, Cook M, Dorr D, Duarte-Salles T, DuVall S, Falconer T, French T, Hanchrow E, Kaur G, Lau W, Li J, Li K, Liu Y, Lu Y, Man K, Matheny M, Mathioudakis N, McLeggon J, McLemore M, Minty E, Morales D, Nagy P, Ostropolets A, Pistillo A, Phan T, Pratt N, Reyes C, Richter L, Ross J, Ruan E, Seager S, Simon K, Viernes B, Yang J, Yin C, You S, Zhou J, Ryan P, Schuemie M, Krumholz H, Hripcsak G, Suchard M. Comparative Effectiveness of Second-Line Antihyperglycemic Agents for Cardiovascular Outcomes A Multinational, Federated Analysis of LEGEND-T2DM. Journal Of The American College Of Cardiology 2024, 84: 904-917. PMID: 39197980, DOI: 10.1016/j.jacc.2024.05.069.Peer-Reviewed Original ResearchConceptsGLP-1 RAsSecond-line agentsGLP-1Antihyperglycemic agentsCardiovascular diseaseMACE riskGlucagon-like peptide-1 receptor agonistsSodium-glucose cotransporter 2 inhibitorsPeptide-1 receptor agonistsDipeptidyl peptidase-4 inhibitorsEffects of SGLT2isType 2 diabetes mellitusPeptidase-4 inhibitorsAdverse cardiovascular eventsCox proportional hazards modelsRandom-effects meta-analysisCardiovascular risk reductionTarget trial emulationProportional hazards modelMultimodal fusion learning for long QT syndrome pathogenic genotypes in a racially diverse population
Jiang J, Thi Vy H, Charney A, Kovatch P, Reddy V, Jayaraman P, Do R, Khera R, Chugh S, Bhatt D, Vaid A, Lampert J, Nadkarni G. Multimodal fusion learning for long QT syndrome pathogenic genotypes in a racially diverse population. Npj Digital Medicine 2024, 7: 226. PMID: 39181999, PMCID: PMC11344778, DOI: 10.1038/s41746-024-01218-1.Peer-Reviewed Original ResearchLong QT syndromeUnited Kingdom BiobankHigh-risk genotypesElectronic health record dataHealth record dataPathogenic variantsRacially/ethnically diverse cohortCongenital long QT syndromeLQTS-susceptibility genesRacially diverse populationMount Sinai BioMe BiobankPathogenic genetic mutationsQT corrected intervalArea under the receiver operating curveBioMe BiobankPatient prioritizationReceiver operating curveQT syndromeRecord dataDiverse cohortGenetic testingDiverse populationsPathogen genotypesGenetic mutationsPatientsInternal tremors and vibrations in long COVID: a cross-sectional study
Zhou T, Sawano M, Arun A, Caraballo C, Michelsen T, McAlpine L, Bhattacharjee B, Lu Y, Khera R, Huang C, Warner F, Herrin J, Iwasaki A, Krumholz H. Internal tremors and vibrations in long COVID: a cross-sectional study. The American Journal Of Medicine 2024 PMID: 39069199, DOI: 10.1016/j.amjmed.2024.07.008.Peer-Reviewed Original ResearchNew-onset conditionsInternal tremorLong COVID symptomsCOVID symptomsNon-Hispanic whitesCross-sectional studyQuality of lifeVisual analogue scaleWorse healthHealth statusStudy participantsDemographic characteristicsAnalogue scaleOutcome variablesNeurological conditionsLong COVIDMast cell disordersTreatment experienceHealthComorbiditiesSymptomsMedian agePeopleCell disordersAI-enabled diagnosis from an electrocardiogram image: the next frontier of innovation in a century-old technology
Khera R. AI-enabled diagnosis from an electrocardiogram image: the next frontier of innovation in a century-old technology. Heart 2024, 110: heartjnl-2024-324299. PMID: 39048290, PMCID: PMC11328242, DOI: 10.1136/heartjnl-2024-324299.Commentaries, Editorials and LettersCorrelation between hospital rates of survival to discharge and long-term survival for in-hospital cardiac arrest: Insights from Get With The Guidelines®-Resuscitation registry
Khera R, Aminorroaya A, Kennedy K, Chan P, Investigators A, Grossestreuer A, Moskowitz A, Ornato J, Churpek M, Starks M, Girotra S, Perman S. Correlation between hospital rates of survival to discharge and long-term survival for in-hospital cardiac arrest: Insights from Get With The Guidelines®-Resuscitation registry. Resuscitation 2024, 202: 110322. PMID: 39029583, PMCID: PMC11390317, DOI: 10.1016/j.resuscitation.2024.110322.Peer-Reviewed Original ResearchRisk-standardized survival ratesIn-hospital cardiac arrestWeighted kappa coefficientResuscitation RegistryLong-term survivalSurvivors of in-hospital cardiac arrestHierarchical logistic regression modelsCardiac arrestIn-hospitalLogistic regression modelsLong-term outcomesSurvival dataKappa coefficientHospital performanceIn-hospital survivalMedicare filesMedicare beneficiariesYears of ageHospitalization ratesPost-discharge survivalHospital dischargeRate of survivalMedicareHospitalRegression models