2023
The effects of elexafactor/tezafactor/ivacaftor beyond the epithelium: spurring macrophages to fight infections.
Bruscia E. The effects of elexafactor/tezafactor/ivacaftor beyond the epithelium: spurring macrophages to fight infections. European Respiratory Journal 2023, 61: 2300216. PMID: 37003613, DOI: 10.1183/13993003.00216-2023.Peer-Reviewed Original ResearchMeSH KeywordsAminophenolsCystic FibrosisCystic Fibrosis Transmembrane Conductance RegulatorEpitheliumHumansMacrophages
2022
Recruited monocytes/macrophages drive pulmonary neutrophilic inflammation and irreversible lung tissue remodeling in cystic fibrosis
Öz H, Cheng E, Di Pietro C, Tebaldi T, Biancon G, Zeiss C, Zhang P, Huang P, Esquibies S, Britto C, Schupp J, Murray T, Halene S, Krause D, Egan M, Bruscia E. Recruited monocytes/macrophages drive pulmonary neutrophilic inflammation and irreversible lung tissue remodeling in cystic fibrosis. Cell Reports 2022, 41: 111797. PMID: 36516754, PMCID: PMC9833830, DOI: 10.1016/j.celrep.2022.111797.Peer-Reviewed Original ResearchConceptsC motif chemokine receptor 2Monocytes/macrophagesLung tissue damageCystic fibrosisTissue damageCF lungPulmonary neutrophilic inflammationPro-inflammatory environmentChemokine receptor 2CF lung diseaseNumber of monocytesSpecific therapeutic agentsGrowth factor βCF transmembrane conductance regulatorLung hyperinflammationLung neutrophiliaNeutrophilic inflammationNeutrophil inflammationInflammation contributesLung damageNeutrophil recruitmentLung diseaseLung tissueReceptor 2Therapeutic targetUpdate on Innate and Adaptive Immunity in Cystic Fibrosis
Bruscia E, Bonfield T. Update on Innate and Adaptive Immunity in Cystic Fibrosis. Clinics In Chest Medicine 2022, 43: 603-615. PMID: 36344069, DOI: 10.1016/j.ccm.2022.06.004.Peer-Reviewed Original ResearchMeSH KeywordsCystic FibrosisCystic Fibrosis Transmembrane Conductance RegulatorHumansImmunity, InnateInflammationLungPneumoniaConceptsChronic infectionCFTR modulator therapyRobust inflammatory responseCystic fibrosis pathophysiologyImmune dysregulationPatient ageExcessive inflammationModulator therapyLung microenvironmentLung infectionImmune mechanismsInflammatory responseAdaptive immunityMucociliary transportCF life expectancyCF lungCystic fibrosisInfectionLife expectancyImmunityCritical roleCurrent understandingMorbidityInflammationFibrosisEmerging Concepts in Defective Macrophage Phagocytosis in Cystic Fibrosis
Jaganathan D, Bruscia EM, Kopp BT. Emerging Concepts in Defective Macrophage Phagocytosis in Cystic Fibrosis. International Journal Of Molecular Sciences 2022, 23: 7750. PMID: 35887098, PMCID: PMC9319215, DOI: 10.3390/ijms23147750.Peer-Reviewed Original ResearchMeSH KeywordsCystic FibrosisCystic Fibrosis Transmembrane Conductance RegulatorHumansInflammationMacrophagesPhagocytosisConceptsPhagosome formationCystic fibrosis transmembrane conductance regulator (CFTR) geneTransmembrane conductance regulator geneInnate immunityTissue homeostasisRegulator geneMutant CFTRCF macrophagesCystic fibrosisPhagocytic mechanismsPathogenic microbesAdaptive immune systemDefective macrophage phagocytosisCFTRCurrent understandingTherapeutic developmentCentral roleMacrophage phagocytosisCFTR modulatorsPhagocytic cellsPhagocytosisNew therapeutic developmentsMacrophages contributesLung functionChronic inflammationRecruitment of monocytes primed to express heme oxygenase-1 ameliorates pathological lung inflammation in cystic fibrosis
Di Pietro C, Öz HH, Zhang PX, Cheng EC, Martis V, Bonfield TL, Kelley TJ, Jubin R, Abuchowski A, Krause DS, Egan ME, Murray TS, Bruscia EM. Recruitment of monocytes primed to express heme oxygenase-1 ameliorates pathological lung inflammation in cystic fibrosis. Experimental & Molecular Medicine 2022, 54: 639-652. PMID: 35581352, PMCID: PMC9166813, DOI: 10.1038/s12276-022-00770-8.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCystic FibrosisHeme Oxygenase-1InflammationLipopolysaccharidesLungMiceMonocytesPhosphatidylinositol 3-KinasesPneumoniaConceptsHeme oxygenase-1Cystic fibrosisOxygenase-1Myeloid differentiation factor 88Neutrophilic pulmonary inflammationChronic airway infectionDifferentiation factor 88HO-1 levelsDisease mouse modelPseudomonas aeruginosaRecruitment of monocytesResolution of inflammationMonocytes/macrophagesTreatment of CFConditional knockout miceMechanism of actionLung neutrophiliaNeutrophilic inflammationLung inflammationAirway infectionPulmonary diseasePulmonary inflammationFactor 88Lung damageProinflammatory cytokines
2020
Single-Cell Transcriptional Archetypes of Airway Inflammation in Cystic Fibrosis.
Schupp JC, Khanal S, Gomez JL, Sauler M, Adams TS, Chupp GL, Yan X, Poli S, Zhao Y, Montgomery RR, Rosas IO, Dela Cruz CS, Bruscia EM, Egan ME, Kaminski N, Britto CJ. Single-Cell Transcriptional Archetypes of Airway Inflammation in Cystic Fibrosis. American Journal Of Respiratory And Critical Care Medicine 2020, 202: 1419-1429. PMID: 32603604, PMCID: PMC7667912, DOI: 10.1164/rccm.202004-0991oc.Peer-Reviewed Original ResearchConceptsCF lung diseaseHealthy control subjectsImmune dysfunctionLung diseaseCystic fibrosisControl subjectsSputum cellsAbnormal chloride transportLung mononuclear phagocytesInnate immune dysfunctionDivergent clinical coursesImmune cell repertoireMonocyte-derived macrophagesCF monocytesAirway inflammationClinical courseProinflammatory featuresCell survival programInflammatory responseTissue injuryCell repertoireImmune functionTranscriptional profilesAlveolar macrophagesMononuclear phagocytes
2017
Ezrin links CFTR to TLR4 signaling to orchestrate anti-bacterial immune response in macrophages
Di Pietro C, Zhang PX, O’Rourke T, Murray TS, Wang L, Britto CJ, Koff JL, Krause DS, Egan ME, Bruscia EM. Ezrin links CFTR to TLR4 signaling to orchestrate anti-bacterial immune response in macrophages. Scientific Reports 2017, 7: 10882. PMID: 28883468, PMCID: PMC5589856, DOI: 10.1038/s41598-017-11012-7.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell LineCystic FibrosisCystic Fibrosis Transmembrane Conductance RegulatorCytoskeletal ProteinsDisease Models, AnimalMacrophage ActivationMacrophagesMicePhosphatidylinositol 3-KinasesProto-Oncogene Proteins c-aktPseudomonas aeruginosaPseudomonas InfectionsSignal TransductionToll-Like Receptor 4ConceptsCystic fibrosis transmembrane conductance regulatorPI3K/AktFibrosis transmembrane conductance regulatorTransmembrane conductance regulatorPI3K/Akt signalingConductance regulatorAnti-bacterial immune responseAkt signalingAltered localizationEzrinCystic fibrosis diseaseMφ activationAktProtein levelsFibrosis diseaseActivationImmune regulationPhagocytosisInductionDirect linkSignalingRegulatorImmune responseMΦMacrophages
2016
Cystic Fibrosis Lung Immunity: The Role of the Macrophage
Bruscia EM, Bonfield TL. Cystic Fibrosis Lung Immunity: The Role of the Macrophage. Journal Of Innate Immunity 2016, 8: 550-563. PMID: 27336915, PMCID: PMC5089923, DOI: 10.1159/000446825.Peer-Reviewed Original ResearchConceptsLung homeostasisCystic fibrosis pathophysiologyTranscriptional shiftMortality of patientsEnvironmental cuesAdaptive immune networkModifier genesMΦ functionMajor morbidityExcessive inflammationMΦ phenotypeLung infectionCF lungCFTR dysfunctionMajor playersHomeostasisDiseaseMacrophagesIntrinsic changesGenesImmune networkPhenotypeMorbidityInflammationPatientsIncreased susceptibility of Cftr−/− mice to LPS-induced lung remodeling
Bruscia E, Zhang P, Barone C, Scholte BJ, Homer R, Krause D, Egan ME. Increased susceptibility of Cftr−/− mice to LPS-induced lung remodeling. American Journal Of Physiology - Lung Cellular And Molecular Physiology 2016, 310: l711-l719. PMID: 26851259, PMCID: PMC4836110, DOI: 10.1152/ajplung.00284.2015.Peer-Reviewed Original ResearchConceptsLung pathologyCF miceImmune responseWT miceChronic inflammationCystic fibrosisAbnormal immune responseChronic pulmonary infectionPersistent immune responseWild-type littermatesCF mouse modelsPseudomonas aeruginosa lipopolysaccharideCF lung pathologyPulmonary infectionChronic administrationLPS exposurePersistent inflammationLung remodelingWT littermatesLung tissueOverall pathologyMouse modelInflammationChronic exposureBacterial products
2015
Innate and Adaptive Immunity in Cystic Fibrosis
Bruscia EM, Bonfield TL. Innate and Adaptive Immunity in Cystic Fibrosis. Clinics In Chest Medicine 2015, 37: 17-29. PMID: 26857765, DOI: 10.1016/j.ccm.2015.11.010.Peer-Reviewed Original ResearchMeSH KeywordsAdaptive ImmunityCystic FibrosisHumansImmunity, InnateMucociliary ClearanceRespiratory MucosaConceptsImmune cellsCystic fibrosis lung diseaseLung tissue destructionAnti-inflammatory cytokinesRobust inflammatory responseElevated proinflammatoryImmune dysregulationUnresolved inflammationLung diseaseInflammatory responseLeading causeCF patientsTissue destructionAdaptive immunityCF lungCystic fibrosisHost defenseElevated numbersExocrine pancreasHyperinflammationLungTissue integrityCurrent understandingCellsProinflammatoryPharmacological modulation of the AKT/microRNA-199a-5p/CAV1 pathway ameliorates cystic fibrosis lung hyper-inflammation
Zhang PX, Cheng J, Zou S, D'Souza AD, Koff JL, Lu J, Lee PJ, Krause DS, Egan ME, Bruscia EM. Pharmacological modulation of the AKT/microRNA-199a-5p/CAV1 pathway ameliorates cystic fibrosis lung hyper-inflammation. Nature Communications 2015, 6: 6221. PMID: 25665524, PMCID: PMC4324503, DOI: 10.1038/ncomms7221.Peer-Reviewed Original ResearchConceptsCF macrophagesMiR-199aMicroRNA-199aHyper-inflammatory responseCFTR-deficient miceCystic fibrosis patientsCystic fibrosis lungLung destructionDisease morbidityPharmacological modulationCF miceCF lungFibrosis patientsInnate immunityLungMacrophagesCAV1 expressionDrug celecoxibReduced levelsTLR4CelecoxibMiceCav1PathwayMorbidity
2013
Disease-relevant proteostasis regulation of cystic fibrosis transmembrane conductance regulator
Villella VR, Esposito S, Bruscia EM, Vicinanza M, Cenci S, Guido S, Pettoello-Mantovani M, Carnuccio R, De Matteis MA, Luini A, Maiuri MC, Raia V, Kroemer G, Maiuri L. Disease-relevant proteostasis regulation of cystic fibrosis transmembrane conductance regulator. Cell Death & Differentiation 2013, 20: 1101-1115. PMID: 23686137, PMCID: PMC3705602, DOI: 10.1038/cdd.2013.46.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Signal TransducingApoptosis Regulatory ProteinsBeclin-1BronchiCell LineCell MembraneCystic FibrosisCystic Fibrosis Transmembrane Conductance RegulatorEpithelial CellsHumansMembrane ProteinsMutationPhosphoric Monoester HydrolasesProteostasis DeficienciesRab5 GTP-Binding ProteinsReceptors, TransferrinSequestosome-1 ProteinConceptsCFTR proteinBronchial epithelial cellsCFTR surface expressionSmall GTPase Rab5Cystic fibrosis transmembrane conductance regulatorFibrosis transmembrane conductance regulatorWild-type CFTRFunctional CFTR proteinSQSTM1/p62Transmembrane conductance regulatorPositive feed-forward loopPlasma membrane stabilityFeed-forward loopEpithelial cellsProteostasis regulationProtein traffickingProteostasis networkGTPase Rab5Rab5 effectorProteostasis regulatorsConformational diseasesCystic fibrosis transmembrane conductance regulator (CFTR) potentiatorRecycling defectsSQSTM1 accumulationUnexpected linkReduced Caveolin-1 Promotes Hyperinflammation due to Abnormal Heme Oxygenase-1 Localization in Lipopolysaccharide-Challenged Macrophages with Dysfunctional Cystic Fibrosis Transmembrane Conductance Regulator
Zhang PX, Murray TS, Villella VR, Ferrari E, Esposito S, D'Souza A, Raia V, Maiuri L, Krause DS, Egan ME, Bruscia EM. Reduced Caveolin-1 Promotes Hyperinflammation due to Abnormal Heme Oxygenase-1 Localization in Lipopolysaccharide-Challenged Macrophages with Dysfunctional Cystic Fibrosis Transmembrane Conductance Regulator. The Journal Of Immunology 2013, 190: 5196-5206. PMID: 23606537, PMCID: PMC3711148, DOI: 10.4049/jimmunol.1201607.Peer-Reviewed Original ResearchMeSH KeywordsAdolescentAdultAnimalsCaveolin 1Cells, CulturedChildChild, PreschoolCystic FibrosisCystic Fibrosis Transmembrane Conductance RegulatorFemaleHeme Oxygenase-1HumansInflammationLipopolysaccharidesLung DiseasesMacrophagesMaleMembrane ProteinsMiceMice, KnockoutNasal PolypsReactive Oxygen SpeciesSignal TransductionToll-Like Receptor 4Young AdultConceptsCav-1 expressionHeme oxygenase-1Dysfunctional cystic fibrosis transmembrane conductance regulatorCystic fibrosis transmembrane conductance regulatorCell surfaceFibrosis transmembrane conductance regulatorProtein caveolin-1Cellular redox statusCell surface localizationCellular oxidative stateTransmembrane conductance regulatorHO-1 enzymePositive feed-forward loopCystic fibrosis macrophagesNegative regulatorCaveolin-1Conductance regulatorCell survivalHO-1 deliverySurface localizationRedox statusMΦ responsesHO-1/CO pathwayPathwayPotential target
2012
Innate immunity in cystic fibrosis lung disease
Hartl D, Gaggar A, Bruscia E, Hector A, Marcos V, Jung A, Greene C, McElvaney G, Mall M, Döring G. Innate immunity in cystic fibrosis lung disease. Journal Of Cystic Fibrosis 2012, 11: 363-382. PMID: 22917571, DOI: 10.1016/j.jcf.2012.07.003.Peer-Reviewed Original ResearchConceptsLung diseaseCF lung diseaseInnate immunityChronic infective lung diseaseNovel immune-targeted therapiesCystic fibrosis lung diseasePulmonary immune responseChronic lung diseaseImmune-targeted therapiesPro-inflammatory cascadeInfective lung diseaseInnate immune regulationInnate immune systemCystic fibrosis patientsPotential clinical relevanceEpithelial dysfunctionLeukocyte recruitmentImmune regulationImmune responseAdaptive immunityClinical relevanceFibrosis patientsImmune systemDiseaseImmunityNebulized Hyaluronan Ameliorates lung inflammation in cystic fibrosis mice
Gavina M, Luciani A, Villella VR, Esposito S, Ferrari E, Bressani I, Casale A, Bruscia EM, Maiuri L, Raia V. Nebulized Hyaluronan Ameliorates lung inflammation in cystic fibrosis mice. Pediatric Pulmonology 2012, 48: 761-771. PMID: 22825912, DOI: 10.1002/ppul.22637.Peer-Reviewed Original ResearchConceptsLung inflammationCystic fibrosisLung tissueReactive oxygen speciesScnn1b-Tg miceHuman airway epithelial cellsSaline-treated miceChronic lung inflammationInflammatory protein-2Chronic respiratory diseasesPeroxisome Proliferator-Activated Receptor GammaPotential anti-inflammatory drugsAnti-inflammatory drugsAirway epithelial cellsCystic fibrosis miceIB3-1Myeloperoxidase levelsMIP-2MPO activityMacrophage infiltrationFibrosis miceTumor necrosisExogenous administrationTNFα expressionCF airways
2011
Abnormal Trafficking and Degradation of TLR4 Underlie the Elevated Inflammatory Response in Cystic Fibrosis
Bruscia EM, Zhang PX, Satoh A, Caputo C, Medzhitov R, Shenoy A, Egan ME, Krause DS. Abnormal Trafficking and Degradation of TLR4 Underlie the Elevated Inflammatory Response in Cystic Fibrosis. The Journal Of Immunology 2011, 186: 6990-6998. PMID: 21593379, PMCID: PMC3111054, DOI: 10.4049/jimmunol.1100396.Peer-Reviewed Original Research
2008
Macrophages Directly Contribute to the Exaggerated Inflammatory Response in Cystic Fibrosis Transmembrane Conductance Regulator−/− Mice
Bruscia EM, Zhang PX, Ferreira E, Caputo C, Emerson JW, Tuck D, Krause DS, Egan ME. Macrophages Directly Contribute to the Exaggerated Inflammatory Response in Cystic Fibrosis Transmembrane Conductance Regulator−/− Mice. American Journal Of Respiratory Cell And Molecular Biology 2008, 40: 295-304. PMID: 18776130, PMCID: PMC2645527, DOI: 10.1165/rcmb.2008-0170oc.Peer-Reviewed Original ResearchConceptsExaggerated inflammatory responseExaggerated immune responseBone marrow-derived macrophagesIL-6Marrow-derived macrophagesCystic fibrosisCF miceKeratinocyte chemoattractantCytokine responsesInflammatory responseIL-1alphaImmune responseAlveolar macrophagesBronchoalveolar lavage fluidGranulocyte colony-stimulating factorNumber of neutrophilsChemoattractant protein-1CF lung diseaseElevated cytokine responseInnate immune systemImportant therapeutic targetCF mouse modelsPopulation of macrophagesColony-stimulating factorPseudomonas aeruginosa LPSRectal Potential Difference and the Functional Expression of CFTR in the Gastrointestinal Epithelia in Cystic Fibrosis Mouse Models
Weiner SA, Caputo C, Bruscia E, Ferreira EC, Price JE, Krause DS, Egan ME. Rectal Potential Difference and the Functional Expression of CFTR in the Gastrointestinal Epithelia in Cystic Fibrosis Mouse Models. Pediatric Research 2008, 63: 73-78. PMID: 18043508, DOI: 10.1203/pdr.0b013e31815b4bc6.Peer-Reviewed Original ResearchConceptsRectal potential differenceMouse modelCF mouse modelsCystic fibrosisFibrosis mouse modelDifferent mouse modelsCystic fibrosis mouse modelUssing chamber methodEffects of interventionsAutosomal recessive diseasePharmacologic interventionsRespiratory epitheliumElectrophysiologic phenotypeGastrointestinal epitheliumCF transmembrane conductance regulator (CFTR) geneRecessive diseaseVivo methodsVivo assaysVivo dataCFTR functionTransmembrane conductance regulator geneReliable assayEpitheliumInterventionCFTR expression
2006
Assessment of cystic fibrosis transmembrane conductance regulator (CFTR) activity in CFTR-null mice after bone marrow transplantation
Bruscia EM, Price JE, Cheng EC, Weiner S, Caputo C, Ferreira EC, Egan ME, Krause DS. Assessment of cystic fibrosis transmembrane conductance regulator (CFTR) activity in CFTR-null mice after bone marrow transplantation. Proceedings Of The National Academy Of Sciences Of The United States Of America 2006, 103: 2965-2970. PMID: 16481627, PMCID: PMC1413802, DOI: 10.1073/pnas.0510758103.Peer-Reviewed Original ResearchConceptsCftr-/- miceEpithelial cellsNasal epitheliumBM-derived cellsBone marrow transplantationWild-type BMAirway epithelial cellsCystic fibrosis transmembrane conductance regulator (CFTR) activityCystic fibrosis miceRare epithelial cellsCftr-null miceMarrow transplantationBM transplantationFibrosis miceRespiratory tractCFTR activityGI tractBone marrowGastrointestinalChloride secretionCFTR-dependent chloride secretionIndividual miceTransplantationDifferent dosesMice
2003
Sequence-specific modification of genomic DNA by small DNA fragments
Gruenert DC, Bruscia E, Novelli G, Colosimo A, Dallapiccola B, Sangiuolo F, Goncz KK. Sequence-specific modification of genomic DNA by small DNA fragments. Journal Of Clinical Investigation 2003, 112: 637-641. PMID: 12952908, PMCID: PMC182219, DOI: 10.1172/jci19773.Peer-Reviewed Original ResearchMeSH KeywordsAnemia, Sickle CellAnimalsBase SequenceCystic FibrosisDNAGene TargetingGenetic TherapyHumansMuscular Dystrophy, DuchenneConceptsSmall fragment homologous replacementSequence-specific modificationSmall DNA fragmentsGenomic DNADNA fragmentsEndogenous genomic DNADuchenne muscular dystrophyTherapeutic modalitiesCystic fibrosisHomologous replacementGenomic editingMuscular dystrophyGenetic lociMouse cellsUnderlying mechanismPhenotypic analysisSpecific modificationsDNA