2024
Lysosomal TMEM106B interacts with galactosylceramidase to regulate myelin lipid metabolism
Takahashi H, Perez-Canamas A, Lee C, Ye H, Han X, Strittmatter S. Lysosomal TMEM106B interacts with galactosylceramidase to regulate myelin lipid metabolism. Communications Biology 2024, 7: 1088. PMID: 39237682, PMCID: PMC11377756, DOI: 10.1038/s42003-024-06810-5.Peer-Reviewed Original ResearchConceptsMyelin lipid metabolismCo-immunoprecipitation assaysSulfated derivative sulfatideLipid metabolismAssociated with multiple neurological disordersCo-immunoprecipitationTMEM106BTransmembrane proteinsAmyloid fibrilsTMEM106B deficiencyHypomyelinating leukodystrophyAlzheimer's diseasePhysiological functionsFrontotemporal dementiaMolecular levelNeurodegenerative brainGalactosylceramidaseLipidomic analysisMultiple neurological disordersMetabolismMyelin lipidsDecreased levelsEndolysosomesAmyloidGalactosylceramidase activity
2023
Concerted roles of LRRTM1 and SynCAM 1 in organizing prefrontal cortex synapses and cognitive functions
de Arce K, Ribic A, Chowdhury D, Watters K, Thompson G, Sanganahalli B, Lippard E, Rohlmann A, Strittmatter S, Missler M, Hyder F, Biederer T. Concerted roles of LRRTM1 and SynCAM 1 in organizing prefrontal cortex synapses and cognitive functions. Nature Communications 2023, 14: 459. PMID: 36709330, PMCID: PMC9884278, DOI: 10.1038/s41467-023-36042-w.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell Adhesion Molecule-1CognitionMembrane ProteinsMiceMice, KnockoutNerve Tissue ProteinsPrefrontal CortexSynapsesConceptsPrefrontal cortexDKO miceSynCAM 1Aberrant neuronal activityDendritic spine numberPrefrontal cortex synapsesSynapse organizersSynapse numberMature brainNeuronal activityKnockout miceSpine numberSynapse developmentCognitive functionTrans-synaptic complexesImmunoglobulin family membersMiceFamily membersSynapsesLRRTM1Behavioral domainsHippocampusCognitive tasksConcerted roleCortex
2022
IFITM3 restricts virus-induced inflammatory cytokine production by limiting Nogo-B mediated TLR responses
Clement M, Forbester J, Marsden M, Sabberwal P, Sommerville M, Wellington D, Dimonte S, Clare S, Harcourt K, Yin Z, Nobre L, Antrobus R, Jin B, Chen M, Makvandi-Nejad S, Lindborg J, Strittmatter S, Weekes M, Stanton R, Dong T, Humphreys I. IFITM3 restricts virus-induced inflammatory cytokine production by limiting Nogo-B mediated TLR responses. Nature Communications 2022, 13: 5294. PMID: 36075894, PMCID: PMC9454482, DOI: 10.1038/s41467-022-32587-4.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCOVID-19CytokinesHumansInterleukin-6Membrane ProteinsMiceNogo ProteinsRNA-Binding ProteinsSARS-CoV-2Toll-Like Receptor 2ConceptsInterferon-induced transmembrane protein 3IL-6 productionViral pathogenesisCytokine productionPro-inflammatory cytokine productionInflammatory cytokine productionInflammatory cytokine responseSARS-CoV-2Transmembrane protein 3Dendritic cellsCytokine responsesImmunoregulatory pathwaysImmunoregulatory functionsTLR2 responsesTLR responsesMouse modelMyeloid cellsViral stimulationProtein 3PathogenesisRestriction factorsNogoCellular localizationResponseCells
2021
NogoA-expressing astrocytes limit peripheral macrophage infiltration after ischemic brain injury in primates
Boghdadi AG, Spurrier J, Teo L, Li M, Skarica M, Cao B, Kwan WC, Merson TD, Nilsson SK, Sestan N, Strittmatter SM, Bourne JA. NogoA-expressing astrocytes limit peripheral macrophage infiltration after ischemic brain injury in primates. Nature Communications 2021, 12: 6906. PMID: 34824275, PMCID: PMC8617297, DOI: 10.1038/s41467-021-27245-0.Peer-Reviewed Original ResearchConceptsBrain injuryPeripheral macrophage infiltrationIschemic brain injuryAnti-inflammatory responseMajority of astrocytesNeurite outgrowth inhibitory proteinIschemic strokePeripheral macrophagesReactive astrocytesMacrophage infiltrationStroke recoveryAstrocyte clustersMarmoset monkeysVisual cortexAstrocytesNogoASingle-nucleus transcriptomicsInhibitory proteinInjuryStrokeHuman brainInfiltrationCritical rolePrecise functionOligodendrocytes
2014
Lysosome size, motility and stress response regulated by fronto-temporal dementia modifier TMEM106B
Stagi M, Klein ZA, Gould TJ, Bewersdorf J, Strittmatter SM. Lysosome size, motility and stress response regulated by fronto-temporal dementia modifier TMEM106B. Molecular And Cellular Neuroscience 2014, 61: 226-240. PMID: 25066864, PMCID: PMC4145808, DOI: 10.1016/j.mcn.2014.07.006.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBasic Helix-Loop-Helix Leucine Zipper Transcription FactorsCells, CulturedChlorocebus aethiopsEmbryo, MammalianGreen Fluorescent ProteinsHumansLuminescent ProteinsLysosomal-Associated Membrane Protein 1LysosomesMembrane ProteinsMiceMice, Inbred C57BLMicrotubule-Associated ProteinsNerve Tissue ProteinsProtein TransportRNA, MessengerRNA, Small InterferingStress, PhysiologicalTransfection
2012
LRRTM1-deficient mice show a rare phenotype of avoiding small enclosures—A tentative mouse model for claustrophobia-like behaviour
Voikar V, Kulesskaya N, Laakso T, Lauren J, Strittmatter SM, Airaksinen MS. LRRTM1-deficient mice show a rare phenotype of avoiding small enclosures—A tentative mouse model for claustrophobia-like behaviour. Behavioural Brain Research 2012, 238: 69-78. PMID: 23089646, PMCID: PMC3784023, DOI: 10.1016/j.bbr.2012.10.013.Peer-Reviewed Original Research
2009
An Unbiased Expression Screen for Synaptogenic Proteins Identifies the LRRTM Protein Family as Synaptic Organizers
Linhoff MW, Laurén J, Cassidy RM, Dobie FA, Takahashi H, Nygaard HB, Airaksinen MS, Strittmatter SM, Craig AM. An Unbiased Expression Screen for Synaptogenic Proteins Identifies the LRRTM Protein Family as Synaptic Organizers. Neuron 2009, 61: 734-749. PMID: 19285470, PMCID: PMC2746109, DOI: 10.1016/j.neuron.2009.01.017.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell DifferentiationCells, CulturedCloning, MolecularCricetinaeCricetulusDisks Large Homolog 4 ProteinEmbryo, MammalianGene ExpressionGene Expression RegulationGene LibraryGenetic TestingGuanylate KinasesHippocampusHumansIntracellular Signaling Peptides and ProteinsLuminescent ProteinsMembrane PotentialsMembrane ProteinsMiceMice, KnockoutNeuronsPatch-Clamp TechniquesPDZ DomainsPresynaptic TerminalsRatsSynapsesTransfectionVesicular Glutamate Transport Protein 1ConceptsExpression screenSynaptogenic proteinsTrans-synaptic signalingDomain proteinsProtein familyTransmembrane proteinCDNA libraryMolecular basisSynaptogenic activityPresynaptic differentiationVesicular glutamate transporter VGLUT1Postsynaptic differentiationSynaptic organizersSynapse developmentPositive clonesCocultures of neuronsReported linkageLRRTMsCellular basisProteinGlutamate transporter VGLUT1LRRTM1Synaptic functionCurrent understandingAltered distribution
2007
The reticulons: a family of proteins with diverse functions
Yang YS, Strittmatter SM. The reticulons: a family of proteins with diverse functions. Genome Biology 2007, 8: 234. PMID: 18177508, PMCID: PMC2246256, DOI: 10.1186/gb-2007-8-12-234.Peer-Reviewed Original ResearchConceptsDiverse functionsEndoplasmic reticulum-Golgi traffickingReticulon homology domainMembrane-associated proteinsAmino-terminal domainFamily of proteinsEukaryotic kingdomsMembrane morphogenesisHomology domainHydrophilic loopReticulon 4Reticulon familyReticulonsDiversity of structuresExpression patternsVesicle formationEndoplasmic reticulumAmino acidsCell surfaceHydrophobic regionAxon growthDiverse groupNeurodegenerative diseasesProteinAmyotrophic lateral sclerosisLRRTM1 on chromosome 2p12 is a maternally suppressed gene that is associated paternally with handedness and schizophrenia
Francks C, Maegawa S, Laurén J, Abrahams BS, Velayos-Baeza A, Medland SE, Colella S, Groszer M, McAuley EZ, Caffrey TM, Timmusk T, Pruunsild P, Koppel I, Lind PA, Matsumoto-Itaba N, Nicod J, Xiong L, Joober R, Enard W, Krinsky B, Nanba E, Richardson AJ, Riley BP, Martin NG, Strittmatter SM, Möller HJ, Rujescu D, St Clair D, Muglia P, Roos JL, Fisher SE, Wade-Martins R, Rouleau GA, Stein JF, Karayiorgou M, Geschwind DH, Ragoussis J, Kendler KS, Airaksinen MS, Oshimura M, DeLisi LE, Monaco AP. LRRTM1 on chromosome 2p12 is a maternally suppressed gene that is associated paternally with handedness and schizophrenia. Molecular Psychiatry 2007, 12: 1129-1139. PMID: 17667961, PMCID: PMC2990633, DOI: 10.1038/sj.mp.4002053.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBrainCell Line, TransformedChromosomes, Human, Pair 2Family HealthFemaleFunctional LateralityGene Expression Regulation, DevelopmentalGenetic Predisposition to DiseaseGenotypeHumansIn Situ HybridizationKaryotypingMaleMembrane ProteinsMiceNerve Tissue ProteinsSchizophreniaSubcellular FractionsConceptsHuman brain asymmetryPutative genetic effectsEvolutionary originImprinted genesChromosome 2p12Candidate genesBehavioral evolutionHuman handednessNeuronal differentiationBrain asymmetryLRRTM1Specific forebrain structuresSchizophrenia/schizoaffective disorderGenetic effectsGenesSame haplotypePotential genetic influencesDirect confirmatory evidenceCommon neurodevelopmental disorderFunction underliesForebrain structuresSchizoaffective disorderHaplotypesSignificant associationNeuropsychiatric disorders
2006
Selective temporal and regional alterations of Nogo-A and small proline-rich repeat protein 1A (SPRR1A) but not Nogo-66 receptor (NgR) occur following traumatic brain injury in the rat
Marklund N, Fulp CT, Shimizu S, Puri R, McMillan A, Strittmatter SM, McIntosh TK. Selective temporal and regional alterations of Nogo-A and small proline-rich repeat protein 1A (SPRR1A) but not Nogo-66 receptor (NgR) occur following traumatic brain injury in the rat. Experimental Neurology 2006, 197: 70-83. PMID: 16321384, PMCID: PMC2849132, DOI: 10.1016/j.expneurol.2005.08.029.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBlotting, WesternBrainBrain InjuriesCell CountCornified Envelope Proline-Rich ProteinsDensitometryFunctional LateralityGPI-Linked ProteinsHippocampusImmunohistochemistryMaleMembrane ProteinsMicrotubule-Associated ProteinsMyelin ProteinsNogo ProteinsNogo Receptor 1OligodendrogliaRatsRats, Sprague-DawleyReceptors, Cell SurfaceThalamusConceptsTraumatic brain injurySmall proline-rich repeat protein 1ANogo-66 receptorBrain injuryIpsilateral cortexReticular thalamusNeuN cellsLateral fluid percussion brain injuryTraumatic central nervous system injuryFluid percussion brain injuryAxonal outgrowthCentral nervous system injuryIpsilateral external capsuleOligodendrocyte marker RIPNeuN-positive cellsNeuronal marker NeuNExpression of NogoNervous system injuryWhite matter tractsImportant brain regionsNgR expressionPoor regenerative capacitySPRR1A expressionWestern blot analysisSystem injury
2004
Regulating axon growth within the postnatal central nervous system
Hu F, Strittmatter SM. Regulating axon growth within the postnatal central nervous system. Seminars In Perinatology 2004, 28: 371-378. PMID: 15693393, DOI: 10.1053/j.semperi.2004.10.001.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAxonsCentral Nervous SystemGPI-Linked ProteinsGrowth InhibitorsHumansHypoxiaIntracellular Signaling Peptides and ProteinsMembrane ProteinsMiceMyelin ProteinsMyelin-Associated GlycoproteinMyelin-Oligodendrocyte GlycoproteinNerve RegenerationNerve Tissue ProteinsNogo ProteinsNogo Receptor 1Receptor, Nerve Growth FactorReceptors, Cell SurfaceConceptsCentral nervous systemAxonal growthNervous systemNeuronal developmentAdult central nervous systemMature central nervous systemAxon growth inhibitorsPostnatal central nervous systemPotential therapeutic interventionsNew neuronal connectionsMyelin-derived proteinsAxonal sproutingDirect blockadeNgR proteinPostnatal brainNeuronal connectionsTherapeutic interventionsAxon growthDevelopmental hypoxiaReduced expressionMyelin proteinsHypoxic conditionsInhibitor pathwayImportant investigationCritical roleNeogenin mediates the action of repulsive guidance molecule
Rajagopalan S, Deitinghoff L, Davis D, Conrad S, Skutella T, Chedotal A, Mueller BK, Strittmatter SM. Neogenin mediates the action of repulsive guidance molecule. Nature Cell Biology 2004, 6: 756-762. PMID: 15258590, DOI: 10.1038/ncb1156.Peer-Reviewed Original ResearchConceptsRepulsive guidance moleculeRetinal ganglion cell axonsGuidance moleculesGanglion cell axonsDorsal root ganglion axonsTemporal retinal axonsVisual map formationReceptor mechanismsCell axonsNeogenin expressionRetinal axonsGanglion axonsAxonal responsivenessOptic tectumChick retinaNeogeninSub-nanomolar affinityAxonsAxonal guidanceNeogenin functionsResponsive stateNeural tubeMap formationExpressionRetinaRGM and its receptor neogenin regulate neuronal survival
Matsunaga E, Tauszig-Delamasure S, Monnier PP, Mueller BK, Strittmatter SM, Mehlen P, Chédotal A. RGM and its receptor neogenin regulate neuronal survival. Nature Cell Biology 2004, 6: 749-755. PMID: 15258591, DOI: 10.1038/ncb1157.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsApoptosisAvian ProteinsCaspasesCell SurvivalCells, CulturedChick EmbryoChickensDown-RegulationEnzyme ActivationGene Expression Regulation, DevelopmentalGreen Fluorescent ProteinsImmunohistochemistryIn Situ HybridizationLuminescent ProteinsMembrane ProteinsMutagenesis, Site-DirectedNeuronsRatsRNA, Small InterferingConceptsRepulsive guidance moleculeNeural tubePro-apoptotic activityAxon guidance proteinCytoplasmic domainImmortalized neuronal cellsGene transfer technologyDependence receptorsCell deathGuidance proteinsNeuronal cellsNeogenin receptorGuidance moleculesNeuronal survivalRetinal axonsChick embryosNeogeninReceptor neogeninExpressionCaspasesReceptorsTransfer technologyEmbryosProteinApoptosis
2003
Fibroblast Growth Factor-Inducible-14 Is Induced in Axotomized Neurons and Promotes Neurite Outgrowth
Tanabe K, Bonilla I, Winkles JA, Strittmatter SM. Fibroblast Growth Factor-Inducible-14 Is Induced in Axotomized Neurons and Promotes Neurite Outgrowth. Journal Of Neuroscience 2003, 23: 9675-9686. PMID: 14573547, PMCID: PMC6740475, DOI: 10.1523/jneurosci.23-29-09675.2003.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAxotomyGanglia, SpinalGene Expression ProfilingGene Expression RegulationHumansMaleMembrane ProteinsMiceMice, Inbred C57BLNerve RegenerationNeuritesNeuronsOligonucleotide Array Sequence AnalysisPC12 CellsPseudopodiaRac1 GTP-Binding ProteinRatsReceptors, Tumor Necrosis FactorRNA, MessengerSciatic NeuropathyTWEAK ReceptorConceptsFibroblast Growth Factor-Inducible 14Dorsal root gangliaDozens of genesDRG neuronsRho family GTPasesPC12 cellsGene expression patternsNeurite outgrowthAxotomized neuronsMRNA expression profilesPromotes Neurite OutgrowthNerve growth factor treatmentRac1 inactivationRac1 GTPaseExpression patternsExpression profilesMicroarray analysisAxotomized DRG neuronsOverexpression of Fn14Rac1 activationNorthern analysisSciatic nerve injurySciatic nerve transectionCoordinated shiftImmunoprecipitation studiesDelayed Systemic Nogo-66 Receptor Antagonist Promotes Recovery from Spinal Cord Injury
Li S, Strittmatter SM. Delayed Systemic Nogo-66 Receptor Antagonist Promotes Recovery from Spinal Cord Injury. Journal Of Neuroscience 2003, 23: 4219-4227. PMID: 12764110, PMCID: PMC6741116, DOI: 10.1523/jneurosci.23-10-04219.2003.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsAxonsAxotomyBehavior, AnimalCornified Envelope Proline-Rich ProteinsFemaleGanglia, SpinalGPI-Linked ProteinsInjections, SubcutaneousIntralaminar Thalamic NucleiMembrane ProteinsMiceMice, Inbred C57BLMolecular Sequence DataMolecular WeightMotor ActivityMyelin ProteinsNerve FibersNerve RegenerationNogo Receptor 1Peptide FragmentsProtein BiosynthesisProteinsPyramidal TractsReceptors, Cell SurfaceSerotoninSpinal CordSpinal Cord InjuriesConceptsSpinal cord injuryCord injuryCorticospinal axonsThoracic spinal cord injuryTherapeutic time windowSpinal cord hemisectionSpinal cord traumaCorticospinal tract axonsAdult mammalian CNSNogo-66 receptorOligodendrocyte myelin glycoproteinCNS axonal injuryCord lesionsSubcutaneous treatmentSystemic therapyCord hemisectionCord traumaIntrathecal applicationLocal therapyLocomotor recoveryFunctional recoverySerotonergic fibersAxonal injuryReceptor antagonistAxon sprouting
2002
Small Proline-Rich Repeat Protein 1A Is Expressed by Axotomized Neurons and Promotes Axonal Outgrowth
Bonilla IE, Tanabe K, Strittmatter SM. Small Proline-Rich Repeat Protein 1A Is Expressed by Axotomized Neurons and Promotes Axonal Outgrowth. Journal Of Neuroscience 2002, 22: 1303-1315. PMID: 11850458, PMCID: PMC6757578, DOI: 10.1523/jneurosci.22-04-01303.2002.Peer-Reviewed Original ResearchMeSH KeywordsActinsAnimalsAxonsAxotomyCell DifferentiationCell Surface ExtensionsCornified Envelope Proline-Rich ProteinsCOS CellsGanglia, SpinalMaleMembrane ProteinsMiceMice, Inbred C57BLNerve CrushNerve RegenerationNeuronsOligonucleotide Array Sequence AnalysisProtein BiosynthesisProteinsRNA, MessengerS100 ProteinsSciatic NerveSciatic NeuropathySpinal Cord InjuriesTransfectionConceptsSmall proline-rich repeat protein 1AProtein 1AAxonal outgrowthMembrane rufflesP21/WAFDifferentiation genesCDNA microarrayNerve regenerationF-actinEpithelial differentiation genesPeripheral axonal damageSciatic nerve regenerationSuccessful nerve regenerationAbility of neuronsSPRR1AGenesUninjured neuronsAxotomized neuronsRange of substratesAxonal damageSensory neuronsOutgrowthNeuronsRufflesAxons
2000
Identification of the Nogo inhibitor of axon regeneration as a Reticulon protein
GrandPré T, Nakamura F, Vartanian T, Strittmatter S. Identification of the Nogo inhibitor of axon regeneration as a Reticulon protein. Nature 2000, 403: 439-444. PMID: 10667797, DOI: 10.1038/35000226.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsAxonsCattleCell DivisionCell LineCentral Nervous SystemChick EmbryoCloning, MolecularConsensus SequenceEscherichia coliGrowth InhibitorsHumansMembrane ProteinsMolecular Sequence DataMyelin ProteinsNerve RegenerationNogo ProteinsOligodendrogliaPC12 CellsRatsRecombinant ProteinsSequence Homology, Amino AcidConceptsCentral nervous systemPeripheral nervous systemCNS white matterAxonal regenerationAxon regenerationNervous systemWhite matterAdult central nervous systemMammalian axon regenerationIN-1 antibodiesReticulon 1Dorsal root ganglion growth conesFunctional recoverySpinal cordSchwann cellsCNS axonsExtracellular domainAxonal extensionNogoAxon extensionGrowth conesOligodendrocytesInhibitory activityReticulon 4Moderate degree
1999
A PDZ Protein Regulates the Distribution of the Transmembrane Semaphorin, M-SemF*
Wang L, Kalb R, Strittmatter S. A PDZ Protein Regulates the Distribution of the Transmembrane Semaphorin, M-SemF*. Journal Of Biological Chemistry 1999, 274: 14137-14146. PMID: 10318831, DOI: 10.1074/jbc.274.20.14137.Peer-Reviewed Original ResearchConceptsPDZ proteinsG-protein signal transduction pathwaySingle PDZ domainDetergent-resistant aggregatesSignal transduction pathwaysAxon guidance signalsPDZ domainCytoplasmic domainProtein interactionsTransduction pathwaysTransmembrane semaphorinsExpression studiesFour residuesGAIPSubcellular distributionHEK293 cellsSemaphorin familyCell surfaceProteinNeural proteinsGuidance signalsInteractsGIPCPDZSemaphorins
1997
Neuronal and Non-Neuronal Collapsin-1 Binding Sites in Developing Chick Are Distinct from Other Semaphorin Binding Sites
Takahashi T, Nakamura F, Strittmatter S. Neuronal and Non-Neuronal Collapsin-1 Binding Sites in Developing Chick Are Distinct from Other Semaphorin Binding Sites. Journal Of Neuroscience 1997, 17: 9183-9193. PMID: 9364065, PMCID: PMC6573609, DOI: 10.1523/jneurosci.17-23-09183.1997.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAvian ProteinsAxonsBinding SitesCells, CulturedCentral Nervous SystemChick EmbryoDNA, ComplementaryFetal ProteinsGanglia, SpinalGlycoproteinsLungMembrane ProteinsMesodermMiceMotor NeuronsMultigene FamilyNerve Growth FactorsNerve Tissue ProteinsNeuronsNeurotrophin 3Organ SpecificityRatsRats, Sprague-DawleyReceptors, Cell SurfaceRecombinant Fusion ProteinsSemaphorin-3AConceptsFusion proteinBinding sitesGrowth conesDRG neuronsNon-neuronal tissuesExtracellular proteinsF fusion proteinSemaphorin familyDRG growth conesProteinLow nanomolar affinityMajor blood vesselsLigand familyBrainstem neuronsSympathetic neuronsNanomolar affinityNervous systemAxonal pathsBiological activityBlood vesselsNeuronsFamilySitesMesenchymeSemaphorins
1993
GAP-43 augments G protein-coupled receptor transduction in Xenopus laevis oocytes.
Strittmatter SM, Cannon SC, Ross EM, Higashijima T, Fishman MC. GAP-43 augments G protein-coupled receptor transduction in Xenopus laevis oocytes. Proceedings Of The National Academy Of Sciences Of The United States Of America 1993, 90: 5327-5331. PMID: 7685122, PMCID: PMC46709, DOI: 10.1073/pnas.90.11.5327.Peer-Reviewed Original ResearchMeSH KeywordsAcetylcholineAnimalsCalciumCattleChloride ChannelsFemaleGAP-43 ProteinGrowth SubstancesGTP-Binding ProteinsHumansInositol 1,4,5-TrisphosphateIon Channel GatingIon ChannelsKineticsMembrane GlycoproteinsMembrane PotentialsMembrane ProteinsNerve Tissue ProteinsOocytesReceptors, MuscarinicRecombinant ProteinsSignal TransductionXenopus laevisConceptsGAP-43Receptor transductionG protein-coupled receptor agonistsCalcium-activated chloride channelXenopus laevis oocytesProtein GAP-43Neuronal protein GAP-43Receptor agonistInjection of inositolLaevis oocytesReceptor stimulationOocyte responseGrowth cone motilityChloride channelsSignal transductionIntracellular regulatorsIntracellular signalsMolecular mechanismsTransductionOocytesHigh levelsAgonists