2024
Publisher Correction: Structural neural plasticity evoked by rapid-acting antidepressant interventions
Liao C, Dua A, Wojtasiewicz C, Liston C, Kwan A. Publisher Correction: Structural neural plasticity evoked by rapid-acting antidepressant interventions. Nature Reviews Neuroscience 2024, 1-1. PMID: 39668187, DOI: 10.1038/s41583-024-00894-y.Peer-Reviewed Original ResearchStructural neural plasticity evoked by rapid-acting antidepressant interventions
Liao C, Dua A, Wojtasiewicz C, Liston C, Kwan A. Structural neural plasticity evoked by rapid-acting antidepressant interventions. Nature Reviews Neuroscience 2024, 1-14. PMID: 39558048, DOI: 10.1038/s41583-024-00876-0.Peer-Reviewed Original ResearchAntidepressant interventionsStructural neural plasticityNeural plasticityPsychoactive drugsRapid-acting antidepressant drugsAction of psychoactive drugsRepetitive transcranial magnetic stimulationExcitatory synaptic functionAntidepressant effectsPrefrontal cortexDepressive disorderNon-invasive neurostimulationAntidepressant drugsMood disordersNeurobiological actionsTranscranial magnetic stimulationElectroconvulsive therapyPsychedelic drugsCortical pyramidal neuronsMechanisms of plasticityLongitudinal effectsGrowth of dendritic spinesPyramidal neuronsStructural plasticitySynaptic function
2021
Psilocybin induces rapid and persistent growth of dendritic spines in frontal cortex in vivo
Shao LX, Liao C, Gregg I, Davoudian PA, Savalia NK, Delagarza K, Kwan AC. Psilocybin induces rapid and persistent growth of dendritic spines in frontal cortex in vivo. Neuron 2021, 109: 2535-2544.e4. PMID: 34228959, PMCID: PMC8376772, DOI: 10.1016/j.neuron.2021.06.008.Peer-Reviewed Original ResearchConceptsFrontal cortexDendritic spinesMouse medial frontal cortexLayer 5 pyramidal neuronsSpine formation ratesApical dendritic spinesMedial frontal cortexUntapped therapeutic potentialPyramidal neuronsSingle doseExcitatory neurotransmissionBehavioral deficitsBeneficial actionsStructural remodelingSynaptic rewiringMammalian brainTherapeutic potentialNeural adaptationUse of psychedelicsSerotonergic psychedelicsSpine sizeTwo-photon microscopyCortexPsilocybinSpineApplying Reinforcement Learning to Rodent Stress Research
Liao C, Kwan AC. Applying Reinforcement Learning to Rodent Stress Research. Chronic Stress 2021, 5: 2470547020984732. PMID: 33598593, PMCID: PMC7863143, DOI: 10.1177/2470547020984732.Peer-Reviewed Original Research
2020
p53 Activates the Long Noncoding RNA Pvt1b to Inhibit Myc and Suppress Tumorigenesis
Olivero CE, Martínez-Terroba E, Zimmer J, Liao C, Tesfaye E, Hooshdaran N, Schofield JA, Bendor J, Fang D, Simon MD, Zamudio JR, Dimitrova N. p53 Activates the Long Noncoding RNA Pvt1b to Inhibit Myc and Suppress Tumorigenesis. Molecular Cell 2020, 77: 761-774.e8. PMID: 31973890, PMCID: PMC7184554, DOI: 10.1016/j.molcel.2019.12.014.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCarcinogenesisCell LineCell ProliferationCells, CulturedChromatinEnhancer Elements, GeneticGene Expression RegulationHumansLung NeoplasmsMiceMice, Inbred C57BLPromoter Regions, GeneticProto-Oncogene MasProto-Oncogene Proteins c-mycRNA, Long NoncodingStress, PhysiologicalTumor Suppressor Protein p53ConceptsMYC transcriptional networkLong noncoding RNA PVT1Cellular proliferationTumor suppressor p53Chromatin organizationTranscriptional networksTarget genesMYC transcriptionTranscriptional activityKb downstreamMYC levelsOncogenic signalingSuppressor p53Suppress tumorigenesisDNA damageRNA PVT1Autochthonous mouse modelMYCTranscriptionP53Anti-proliferative activityTumor progressionTumor growthLung cancerMouse model