2020
Chaperonin-assisted protein folding: a chronologue
Horwich AL, Fenton WA. Chaperonin-assisted protein folding: a chronologue. Quarterly Reviews Of Biophysics 2020, 53: e4. PMID: 32070442, DOI: 10.1017/s0033583519000143.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphateAmino AcidsAnimalsCarbon DioxideChaperoninsCytosolDimerizationHeat-Shock ProteinsHumansHydrophobic and Hydrophilic InteractionsKineticsMiceMitochondriaMutationNeurosporaProtein ConformationProtein DenaturationProtein FoldingRibonuclease, PancreaticRibulose-Bisphosphate CarboxylaseSurface PropertiesTemperature
2001
ATP-Bound States of GroEL Captured by Cryo-Electron Microscopy
Ranson N, Farr G, Roseman A, Gowen B, Fenton W, Horwich A, Saibil H. ATP-Bound States of GroEL Captured by Cryo-Electron Microscopy. Cell 2001, 107: 869-879. PMID: 11779463, DOI: 10.1016/s0092-8674(01)00617-1.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphateChaperonin 60Cryoelectron MicroscopyEscherichia coliModels, MolecularProtein BindingProtein FoldingConceptsCryo-electron microscopySalt-bridge contactsGroEL ringGroEL-GroESChaperonin GroELSalt bridge interactionsCryo-EMMolecular machinesADP complexGroELATPRing complexBridge interactionEffect of ATPCooperativityOpposite ringIntermediate domainGroESGeneral insightsComplexesPolypeptideDomainBridge contactsStructural modelAffinityGroEL/GroES-Mediated Folding of a Protein Too Large to Be Encapsulated
Chaudhuri T, Farr G, Fenton W, Rospert S, Horwich A. GroEL/GroES-Mediated Folding of a Protein Too Large to Be Encapsulated. Cell 2001, 107: 235-246. PMID: 11672530, DOI: 10.1016/s0092-8674(01)00523-2.Peer-Reviewed Original ResearchFolding of malate dehydrogenase inside the GroEL–GroES cavity
Chen J, Walter S, Horwich A, Smith D. Folding of malate dehydrogenase inside the GroEL–GroES cavity. Nature Structural & Molecular Biology 2001, 8: 721-728. PMID: 11473265, DOI: 10.1038/90443.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphateAnimalsBinding SitesChaperonin 10Chaperonin 60Chromatography, High Pressure LiquidDeuteriumDimerizationHydrogen BondingKineticsMalate DehydrogenaseMass SpectrometryMitochondria, HeartModels, MolecularPeptide FragmentsProtein BindingProtein DenaturationProtein FoldingProtein Structure, SecondaryProtein Structure, TertiaryProtein SubunitsSwineConceptsMalate dehydrogenaseNonnative substrate proteinGroEL-GroES cavitySubstrate proteinsProductive foldingChaperonin GroELApical domainGroESGroELMechanical unfoldingGlobal destabilizationSecondary structureHydrophilic chamberCentral cavityInitial proteinDeuterium exchangeFoldingProteinATPDehydrogenaseHydrophobic central cavityMass spectrometryOpen ringPolypeptideUnfoldingClpA mediates directional translocation of substrate proteins into the ClpP protease
Reid B, Fenton W, Horwich A, Weber-Ban E. ClpA mediates directional translocation of substrate proteins into the ClpP protease. Proceedings Of The National Academy Of Sciences Of The United States Of America 2001, 98: 3768-3772. PMID: 11259663, PMCID: PMC31127, DOI: 10.1073/pnas.071043698.Peer-Reviewed Original ResearchConceptsSubstrate proteinsClpP proteaseUnfolded substrate proteinsATP-dependent unfoldingATP-dependent mannerATP-dependent translocationChaperone ClpAProteolytic chamberFluorescence resonance energy transferDirectional translocationCOOH terminusClpAResonance energy transferProteinTranslocationIntracellular degradationFluorescence anisotropyProteaseRing complexTerminusLarge assembliesDonor fluorophoreRecognition elementRecent studiesHslUVMechanisms of protein folding
Grantcharova V, Alm E, Baker D, Horwich A. Mechanisms of protein folding. Current Opinion In Structural Biology 2001, 11: 70-82. PMID: 11179895, DOI: 10.1016/s0959-440x(00)00176-7.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphateChaperoninsDNA Mutational AnalysisKineticsModels, ChemicalModels, MolecularProtein BindingProtein DenaturationProtein FoldingThermodynamicsConceptsEscherichia coli chaperonin GroELNon-native proteinsATP-dependent formationCo-chaperonin GroESLowest free energy pathChaperonin GroELProtein foldingUnfolded proteinsLarge proteinsGroELNative stateNative structureContact orderProteinChaperoninKinetic trapsFoldingChaperonesGroESFree energy pathPolypeptideComplexes
2000
Multivalent Binding of Nonnative Substrate Proteins by the Chaperonin GroEL
Farr G, Furtak K, Rowland M, Ranson N, Saibil H, Kirchhausen T, Horwich A. Multivalent Binding of Nonnative Substrate Proteins by the Chaperonin GroEL. Cell 2000, 100: 561-573. PMID: 10721993, DOI: 10.1016/s0092-8674(00)80692-3.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphateAnimalsBacterial ProteinsBinding SitesCattleChaperonin 10Chaperonin 60Chemical PhenomenaChemistry, PhysicalCryoelectron MicroscopyCystineEscherichia coliEthylmaleimideImage Processing, Computer-AssistedMacromolecular SubstancesMalate DehydrogenaseModels, MolecularPeptidesProtein BindingProtein ConformationProtein FoldingProtein Structure, TertiaryRibulose-Bisphosphate CarboxylaseStructure-Activity RelationshipThiosulfate SulfurtransferaseConceptsNonnative substrate proteinApical domainSubstrate proteinsChaperonin GroELWild-type domainCross-linking experimentsCochaperonin GroESNonnative proteinsProductive foldingGroEL ringSingle polypeptideHydrophobic residuesMalate dehydrogenaseBinary complex formationRubiscoProteinInside aspectMultivalent bindingGroELCentral cavityComplex formationBindingDomainGroESOpen ring
1999
Chaperone rings in protein folding and degradation
Horwich A, Weber-Ban E, Finley D. Chaperone rings in protein folding and degradation. Proceedings Of The National Academy Of Sciences Of The United States Of America 1999, 96: 11033-11040. PMID: 10500119, PMCID: PMC34237, DOI: 10.1073/pnas.96.20.11033.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphateMolecular ChaperonesProtein FoldingProteinsStructure-Activity RelationshipConceptsSubstrate proteinsNon-native formsProcess of foldingCellular proteinsDegradation chamberProtein foldingStep of recognitionProteolytic complexRing assemblyDivergent fatesConformational changesNative stateProteinChaperoninFoldingCentral cavityCooperative interactionsATPPolypeptideFateChaperonesCompartmentalizationVital roleMotifProteaseGlobal unfolding of a substrate protein by the Hsp100 chaperone ClpA
Weber-Ban E, Reid B, Miranker A, Horwich A. Global unfolding of a substrate protein by the Hsp100 chaperone ClpA. Nature 1999, 401: 90-93. PMID: 10485712, DOI: 10.1038/43481.Peer-Reviewed Original ResearchConceptsSubstrate proteinsATP-dependent degradationGreen fluorescent protein GFPHydrogen exchange experimentsStable monomeric proteinFluorescent protein GFPNon-native formsChaperone ClpAChaperone familyEukaryotic proteinsProtease ClpPPresence of ATPChaperonin GroELHexameric ringClpAProteasome functionProtein GFPProtein structureMonomeric proteinNative proteinGlobal unfoldingProteinCentral channelRecognition peptideClpAPGroEL-GroES Cycling ATP and Nonnative Polypeptide Direct Alternation of Folding-Active Rings
Rye H, Roseman A, Chen S, Furtak K, Fenton W, Saibil H, Horwich A. GroEL-GroES Cycling ATP and Nonnative Polypeptide Direct Alternation of Folding-Active Rings. Cell 1999, 97: 325-338. PMID: 10319813, DOI: 10.1016/s0092-8674(00)80742-4.Peer-Reviewed Original Research
1998
Maturation of Human Cyclin E Requires the Function of Eukaryotic Chaperonin CCT
Won K, Schumacher R, Farr G, Horwich A, Reed S. Maturation of Human Cyclin E Requires the Function of Eukaryotic Chaperonin CCT. Molecular And Cellular Biology 1998, 18: 7584-7589. PMID: 9819444, PMCID: PMC109339, DOI: 10.1128/mcb.18.12.7584.Peer-Reviewed Original ResearchConceptsHuman cyclin EChaperonin CCTCyclin EEukaryotic cytosolic chaperonin CCTCytosolic chaperonin CCTEukaryotic chaperonin CCTLarge oligomeric assembliesYeast-based screenG1/S phase transitionCyclin-dependent kinase CDK2ATP-dependent processS phase transitionCCT complexPresence of ATPProteasomal actionCCT functionHuman proteinsKinase CDK2Oligomeric assembliesHuman cellsNative stateCDK2ProteinMaturationBiogenesisFolding in vivo of a newly translated yeast cytosolic enzyme is mediated by the SSA class of cytosolic yeast Hsp70 proteins
Kim S, Schilke B, Craig E, Horwich A. Folding in vivo of a newly translated yeast cytosolic enzyme is mediated by the SSA class of cytosolic yeast Hsp70 proteins. Proceedings Of The National Academy Of Sciences Of The United States Of America 1998, 95: 12860-12865. PMID: 9789005, PMCID: PMC23633, DOI: 10.1073/pnas.95.22.12860.Peer-Reviewed Original ResearchConceptsOrnithine transcarbamoylaseYeast cytosolic enzymesCytosolic enzymeNative stateCytosolic Hsp70 proteinsGalpha transducinCytosolic chaperoninEukaryotic cytosolYeast Hsp70Chaperone actionPosttranslational mannerYeast cytosolCytosolic proteinsHSP70 proteinHomotrimeric enzymeProteinSpecific activitySTRUCTURE AND FUNCTION IN GroEL-MEDIATED PROTEIN FOLDING
Sigler P, Xu Z, Rye H, Burston S, Fenton W, Horwich A. STRUCTURE AND FUNCTION IN GroEL-MEDIATED PROTEIN FOLDING. Annual Review Of Biochemistry 1998, 67: 581-608. PMID: 9759498, DOI: 10.1146/annurev.biochem.67.1.581.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphateChaperonin 10Chaperonin 60Models, MolecularPeptidesProtein BindingProtein ConformationProtein FoldingConceptsProtein foldingNative stateMechanism of chaperoninsCis ternary complexAsymmetric conformational changesFinal native stateNonnative polypeptidesCochaperonin GroESGroEL ringTrans ringATP hydrolysisGenetic informationChaperonin moleculesConformational changesFolding processFoldingTernary complexPolypeptideGroESATPBiochemical investigationsFinal stepChaperoninGroELComplexes[11] Construction of single-ring and two-ring hybrid versions of bacterial chaperonin GroEL
Horwich A, Burston S, Rye H, Weissman J, Fenton W. [11] Construction of single-ring and two-ring hybrid versions of bacterial chaperonin GroEL. Methods In Enzymology 1998, 290: 141-146. PMID: 9534157, DOI: 10.1016/s0076-6879(98)90013-1.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphateBacterial ProteinsChaperonin 10Chaperonin 60ChaperoninsModels, MolecularPlasmidsProtein ConformationProtein FoldingRecombinant ProteinsConceptsBacterial chaperonin GroELGreen fluorescent proteinChaperonin GroELDouble-ring assemblyAddition of GroESDouble-ring complexesSingle-ring versionUnliganded GroELBacterial chaperoninsGroEL ringNeighboring subunitProtein foldsGroELEquatorial domainNonnative formsFluorescent proteinGroESNative stateNative formCentral channelCritical signalingSubunitsSignalingForm contactsNormal ATP
1997
Distinct actions of cis and trans ATP within the double ring of the chaperonin GroEL
Rye H, Burston S, Fenton W, Beechem J, Xu Z, Sigler P, Horwich A. Distinct actions of cis and trans ATP within the double ring of the chaperonin GroEL. Nature 1997, 388: 792-798. PMID: 9285593, DOI: 10.1038/42047.Peer-Reviewed Original ResearchConceptsTrans ringProductive foldingGroES complexChaperonin GroELCis ringCo-chaperone GroESDouble-ring complexesCis ternary complexNon-hydrolysable ATPHydrolysis of ATPGroEL functionGroEL-ATPATP bindingEfficient foldingBinds ATPATP hydrolysisGroESMutant formsMalate dehydrogenaseGroELAMP-PNPDouble-ring structureFoldingTernary complexATPGroEL‐Mediated protein folding
Fenton W, Horwich A. GroEL‐Mediated protein folding. Protein Science 1997, 6: 743-760. PMID: 9098884, PMCID: PMC2144759, DOI: 10.1002/pro.5560060401.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphateChaperonin 10Chaperonin 60HydrolysisPeptidesProtein BindingProtein FoldingConceptsGroEL-GroESNonnative polypeptidesSubstrate proteinsATP bindingProtein foldingHomologous proteinsNonnative formsPrimary structureConformational changesGroELTernary complexPolypeptideAssociation 5FoldingProteinBindingChaperonesGroESConformationEnergy landscapeRole of hydrophobicityPathway 3RolePathwayComplex C.
1996
Characterization of the Active Intermediate of a GroEL–GroES-Mediated Protein Folding Reaction
Weissman J, Rye H, Fenton W, Beechem J, Horwich A. Characterization of the Active Intermediate of a GroEL–GroES-Mediated Protein Folding Reaction. Cell 1996, 84: 481-490. PMID: 8608602, DOI: 10.1016/s0092-8674(00)81293-3.Peer-Reviewed Original ResearchConceptsCis ternary complexProtein foldingRelease of GroESAddition of GroESFolding reactionTernary complexNonhydrolyzable ATP analogGroES releaseProtein folding reactionSubstrate proteinsPresence of ATPGroEL mutantGroEL-GroESGroEL complexNonnative substratesATP hydrolysisGroESComplete foldingSubstrate flexibilityATP analogFoldingFluorescence anisotropyActive stateATPRecent studies
1995
From the Cradle to the Grave: Ring Complexes in the Life of a Protein
Weissman J, Sigler P, Horwich A. From the Cradle to the Grave: Ring Complexes in the Life of a Protein. Science 1995, 268: 523-524. PMID: 7725096, DOI: 10.1126/science.7725096.Peer-Reviewed Original ResearchKinesis of polypeptide during GroEL-mediated folding.
Horwich A, Weissman J, Fenton W. Kinesis of polypeptide during GroEL-mediated folding. Cold Spring Harbor Symposia On Quantitative Biology 1995, 60: 435-40. PMID: 8824417, DOI: 10.1101/sqb.1995.060.01.048.Peer-Reviewed Original Research
1992
Prevention of Protein Denaturation Under Heat Stress by the Chaperonin Hsp60
Martin J, Horwich A, Hartl F. Prevention of Protein Denaturation Under Heat Stress by the Chaperonin Hsp60. Science 1992, 258: 995-998. PMID: 1359644, DOI: 10.1126/science.1359644.Peer-Reviewed Original ResearchConceptsDihydrofolate reductaseShock proteinsMitochondrial heat shock protein 60Native dihydrofolate reductaseHeat shock proteinsVariety of polypeptidesPreexisting proteinsChaperonin Hsp60Hsp60 familyEnvironmental stressHeat shock protein 60Shock protein 60Stress conditionsHeat stressProteinGeneral mechanismPhysiological responsesProtein 60HSP60Cellular structureThermal denaturationProtein denaturationOrganellesDenaturationRefolding